#### The number of $S_4$ -fields with given discriminant

Jürgen Klüners klueners@mathematik.uni-kassel.de

#### Question

**Definition:**  $N_{S_4}(d)$  is the number of quartic  $S_4$ -fields with (absolute) discriminant d.

**Conjecture:**  $\forall \varepsilon > 0 : N_{S_4}(d) = O_{\varepsilon}(d^{\varepsilon}), i.e.$  $N_{S_4}(d) \leq c(\varepsilon)d^{\varepsilon}$  for some constant  $c(\varepsilon) > 0.$ 

**Theorem:**  $\forall \varepsilon > 0 : N_{S_4}(d) = O_{\varepsilon}(d^{1/2+\varepsilon}).$ 

This replaces the exponent 4/5 of Michel and Venkatesh.

In average we have: **Theorem:** (Bhargava)  $\lim_{x \to \infty} \frac{1}{x} \sum_{d \le x} N_{S_4}(d) = c(S_4) > 0.$ 

### A critical case

Suppose L/k and N/L are unramified. Then  $d_k = d_M = d_K$ .



Problem: Large 2– and 3–class groups of k and M, resp.



## A theorem of Gerth III

**Theorem (Gerth III):** Let  $M/\mathbb{Q}$  be a non-cyclic cubic extension and denote by L the normal closure of M and by k the unique quadratic subfield of L. Then the following holds.

- 1. If L/k is unramified, then  $\operatorname{rk}_3(\operatorname{Cl}_M) = \operatorname{rk}_3(\operatorname{Cl}_k) 1$ .
- 2.  $\operatorname{rk}_3(\operatorname{Cl}_M) = \operatorname{rk}_3(\operatorname{Cl}_k) + t 1 z y$ , where  $y \leq t 1$  and t is the number of prime ideals of  $\mathcal{O}_k$  which ramify in L. Furthermore we have  $0 \leq z \leq u$  where u is the number of primes which are totally ramified in M but split in k.
- 3.  $\operatorname{rk}_3(\operatorname{Cl}_M) \ge \operatorname{rk}_3(\operatorname{Cl}_k) u$

If  $rk_3(Cl_M)$  is large, then  $rk_2(Cl_M)$  must be small!

## Parametrizing $S_4$ -extensions

### **Definitions:**

1. Rad $(n) := \prod_{p|n} p$ .

2.  $\mathcal{K}$  set of quartic  $S_4$ -extensions up to isomorphy.

$$\Psi: \mathcal{K} \to \mathbb{N}^3, K \mapsto (\operatorname{Rad}(d_k), \operatorname{Rad}(\mathcal{N}(d_{L/k})), \operatorname{Rad}(\mathcal{N}(d_{N/L}))).$$

We need to solve two problems:

- 1. What is the discriminant of a field associated to a triple (a, b, c)?
- 2. How many fields are associated to a given triple (upper bounds)? E.g. k is one of the following quadratic fields:  $\mathbb{Q}(\sqrt{a}), \mathbb{Q}(\sqrt{-a}), \mathbb{Q}(\sqrt{2a}), \mathbb{Q}(\sqrt{-2a}).$

# Upper bounds for the number of fields associated to (a, b, c)

**Lemma 1:** All fields M such that L/K is only ramified in primes dividing b are contained in the ray class field of  $\mathfrak{a} := 3b\mathcal{O}_k$ . The number of those extensions can be bounded by

$$\frac{3^r - 1}{3 - 1}$$
, where  $r = \operatorname{rk}_3(\operatorname{Cl}_k) + \omega(b) + 2$ .

**Lemma 2:** The number of  $S_4$ -extensions  $N \supset M$  such that  $\mathcal{N}(d_{N/L})$  is only divisible by primes dividing c is bounded by

$$2^r - 1$$
, where  $r = rk_2(Cl_M) + 3\omega(c) + 6$ .

## Upper bounds II

The number of elements of the fibre  $\Psi^{-1}(a, b, c)$  is bounded by

$$3\left(\frac{3^{r_1}-1}{3-1}\right)\left(2^{r_2}-1\right) \le 3/2 \cdot 9 \cdot 2^6 3^{\mathrm{rk}_3(\mathrm{Cl}_k)} 2^{\mathrm{rk}_3(\mathrm{Cl}_M)} 3^{\omega(b)} 8^{\omega(c)}.$$

### Corollary from theorem of Gerth III

There exists a constant C > 0 such that

$$3^{\mathrm{rk}_3(\mathrm{Cl}_k)} 2^{\mathrm{rk}_2(\mathrm{Cl}_M)} \le Ca^{1/2} b \log(ab^2)^2 3^{\omega(b)}.$$

#### Theorem:

The number of elements of the fibre  $\Psi^{-1}(a, b, c)$  is bounded by

 $3^{3}2^{5}Ca^{1/2}b\log(ab^{2})^{2}9^{\omega(b)}8^{\omega(c)}.$ 

## Discriminants

**Definition:**  $S = \{2, 3\}, a \in \mathbb{N}$ . Then we define  $a^S$  to be the largest number dividing a which is coprime to S.

**Lemma:** Let  $\Psi(K) = (a, b, c)$ . Then  $d_K^S = (ab^2c^2)^S$ .

Write  $d = 2^{e_2} 3^{e_3} d_1 d_2^2 d_3^3$  with  $6d_1 d_2 d_3$  squarefree. Then  $a^S = d_1 d_3, d_3 \mid c^S, (bc)^S = d_2 d_3.$ 

**Theorem:**  $\forall \varepsilon > 0 : N_{S_4}(d) = O_{\varepsilon}(d^{1/2+\varepsilon}).$ 

**Theorem:** The number of degree 4 fields of given discriminant d is bounded by  $O_{\varepsilon}(d^{1/2+\varepsilon})$ .

**Remark:** d squarefree. Then  $N_{S_4}(d) = O(d^{1/2} \log(d)^2)$ .

## Connections to modular forms of given conductor

|                                                | $D_p$                     | $I_p$ | $v_p(N)$ | $v_p(d)$ |                     | $p \mid$ |
|------------------------------------------------|---------------------------|-------|----------|----------|---------------------|----------|
| $\mathfrak{p}_1^2\mathfrak{p}_2\mathfrak{p}_3$ | $C_2$                     | $C_2$ | 1        | 1        |                     | a        |
| $\mathfrak{p}_1^2\mathfrak{p}_2$               | $C_2 \times C_2$          | $C_2$ | 2        | 1        |                     | a        |
| $\mathfrak{p}_1^2$                             | $C_2 \times C_2$ or $C_4$ | $C_2$ | 2 or 1   | 2        |                     | С        |
| $\mathfrak{p}_1^2\mathfrak{p}_2^2$             | $C_2 \times C_2$ or $C_2$ | $C_2$ | 2 or 1   | 2        |                     | С        |
| $\mathfrak{p}_1^4$                             | $D_4$                     | $C_4$ | 2        | 3        | $p \equiv 3 \mod 4$ | a, c     |
| $\mathfrak{p}_1^4$                             | $C_4$                     | $C_4$ | 1        | 3        | $p \equiv 1 \mod 4$ | a, c     |
| $\mathfrak{p}_1^3\mathfrak{p}_2$               | $C_3$                     | $C_3$ | 1        | 2        | $p \equiv 1 \mod 3$ | b        |
| $\mathfrak{p}_1^3\mathfrak{p}_2$               | $D_3$                     | $C_3$ | 2        | 2        | $p \equiv 2 \mod 3$ | b        |

## Connections to modular forms of given conductor II

**Theorem:** Let  $N = 2^{n_2} 3^n_3 N_{1,1} N_{1,2} N_2^2$  such that  $6N_{1,1} N_{1,2} N_2$  is squarefree. Assume that  $p \mid N_{1,i}$  if and only if  $p \equiv i \mod 3$  (i = 1, 2). Then the number of  $S_4$ -fields of given conductor N is bounded by

$$C54^{\omega(N)}N_{1,1}N_{1,2}^{1/2}N_2\log(N)^2$$

for a suitable C > 0.

**Corollary:** Let p be a prime. Then the dimension of the space of octahedral modular forms of weight 1 and conductor p or  $p^2$  is bounded above by  $O(p^{1/2} \log(p)^2)$ .

**Corollary:** Assume  $p \mid N \Rightarrow p \equiv 2 \mod 3$ . Then the dimension of the space of octahedral forms of weight 1 and conductor N is bounded above by  $O_{\varepsilon}(N^{1/2+\varepsilon})$  for all  $\varepsilon > 0$ .