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1 Graphs Produced by Discrete Exponentiation:
A Comparison to Random Graphs

We investigate the functional graph produced by the discrete exponentiation
transformation

ga mod p.

This is the inverse of the discrete logarithm, which is used in many crypto-
graphic algorithms. We predict that these graphs behave like random graphs
with the same in-degrees and out-degrees for each node.

2 Terminology and Background
A functional graphis a directed graph such that each vertex must have exactly
one edge directed out from it. Anm-ary functional graphis a graph where
each node has in-degree of exactly zero orm.

There are a number of statistics of interest derived from functional graphs.
These include:

• number of connected components

• number of cyclic nodes

• number of terminal nodes

• average cycle length

•maximum cycle length

• average tail length

•maximum tail length
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Figure 1: The graph generated usingf (x) = 3x mod 11. This graph has two
connected components: one containing a cycle of length three (1,3,5) and the
other containing a cycle of length one (fixed point) at 4.

3 Theoretical Predictions for Random Binary
Functional Graphs: The Basis for Comparison

The methods in [2] can be extended to develop estimates for these parameters
in random binary functional graphs. Define the following:

BinFunGraph = set(Components)
Component = cycle(Node*BinaryTree)
BinaryTree = Node + Node*set(BinaryTree, cardinality = 2)
Node = Atomic Unit

Imitating [2, Section 2.1], the generating functions of interest are

f (z) = ec(z) (Binary functional graphs) (1)

c(z) = ln
1

1− zb(z)
(Connected components) (2)

b(z) = z +
1

2
zb2(z) (Binary trees) (3)

A bivariate generating function,ξ(u, z), is defined with parameteru marking
the elements of interest. The mean value generating function,Ξ(z), is found as

Ξ(z) =
∂ξ

∂u

∣∣∣∣
u=1

.

This yields the following results

Ξ1(z) =
1

1− zb(z)
ln

(
1

1− zb(z)

)
(Number of components) (4)

Ξ2(z) =
zb(z)

(1− zb(z))2
(Number of cyclic nodes) (5)

Ξ3(z) =
z2

(1− 2z2)3/2
. (Number of terminal nodes) (6)

We compute an asymptotic form for each of these by performing a singular-
ity analysis1 as in [2, Section 2]. (See [1] for full proofs.)

Theorem 1.The expected values of the following parameters in a random bi-
nary functional graph of sizen, asn→∞, are asymptotic to

Number of components
ln (2n) + γ

2
(i)

Number of cyclic nodes
√

πn/2− 1 (ii)
Number of terminal nodes n/2 (iii)

In part (i), γ represents the Euler constant which is approximately
0.57721566. Note that the formula in part (iii) can be proved to be exact.

Using similar techniques, we can calculate:

Theorem 2.The expected values for the following parameters as seen from a
random node in a random binary functional graph of sizen, asn → ∞, are
asymptotic to

Average cycle length
√

πn/8 (i)

Average tail length
√

πn/8 (ii)

Theorem 3.The expected values of the largest cycle and the largest tail in a
random binary functional graph of sizen, asn→∞, are asymptotic to

Largest cycle

√
πn

2

∫ ∞

0

[
1− exp

(
−

∫ ∞

v
e−udu

u

)]
dv ≈ 0.78248

√
n

(i)

Largest tail
√

2πn ln 2− 3 + 2 ln 2 ≈ 1.73746
√

n− 1.61371 (ii)

4 Success in Predicting the Observed Results
We generated experimental data for the parameters described by these theoret-
ical predictions. The generation and analysis of each of the discrete exponen-
tiation graphs was handled by C++ code written by the first author. The com-
putation took approximately one week for each prime. The statistics observed
(Table 1) seem to support the claim that binary functional graphs induced by
exponentiation modulo a prime behave in the same fashion as random binary
functional graphs.

100043 100057 106261

Observed Error Observed Error Observed Error

Components 6.389 0.047% 6.364 0.437% 6.370 0.810%

Cyclic Nodes 395.303 0.029% 395.858 0.105% 408.433 0.217%

Terminal Nodes 50021 0% 50028 0% 53130 0%

Avg Cycle 198.319 0.056% 197.766 0.230% 202.651 0.795%

Avg Tail 197.961 0.125% 197.550 0.339% 202.422 0.907%

Max Cycle 247.261 0.094% 247.302 0.082% 256.986 0.754%

Max Tail 541.827 1.115% 549.588 1.145% 566.370 1.744%

Table 1: The observed results for the three primes over all binary functional
graphs generated and the corresponding percent errors.
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1The analyses in this paper have been performed using the computer algebra program Maple and the packages created as part of the Algorithms Project at INRIA, Rocquencourt, France. The packages can be found online at
http://pauillac.inria.fr/algo/libraries/software.html.


