
ATKIN’S ECPP (Elliptic Curve Primality Proving) ALGORITHM

OSMANBEY UZUNKOL

OCTOBER 2004

ATKIN’S ECPP (Elliptic Curve Primality Proving)

ALGORITHM

A THESIS SUBMITTED TO

DEPARTMENT OF MATHEMATICS

OF

TECHNICAL UNIVERSITY OF KAISERSLAUTERN

BY

OSMANBEY UZUNKOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF MATHEMATICS

October 2004

abstract

ATKIN’S ECPP ALGORITHM

Uzunkol, Osmanbey

M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Gerhard Pfister

October 2004, cxxiii pages

In contrast to using a strong generalization of Fermat’s theorem, as in Jacobi-

sum Test, Goldwasser and Kilian used some results coming from Group Theory

in order to prove the primality of a given integer N ∈ N. They developed an

algorithm which uses the group of rational points of elliptic curves over finite

fields. Atkin and Morain extended the idea of Goldwasser and Kilian and used

the elliptic curves with CM (complex multiplication) to obtain a more efficient

algorithm, namely Atkin’s ECPP (elliptic curve primality proving) Algorithm.

Aim of this thesis is to introduce some primality tests and explain the Atkin’s

ECPP Algorithm.

Keywords: Cryptography, Algorithms, Algorithmic Number Theory.

ii

öz

Hergün bir yere konmak ne güzel,

Bulanmadan donmadan akmak ne hoş,

Dünle beraber gitti cancağızım!

Ne kadar söz varsa düne ait,

Şimdi yeni şeyler söylemek lazım...

...............Mevlana Celaleddini’i Rumi...............

iii

I would like to thank first of all to my supervisor Prof. Dr . Gerhard Pfister for

his help before and during this work. Secondly, I would like to thank also Hans

Schönemann and Raşit Şimşek for their computer supports in computer algebra

system SINGULAR and programming language C++, respectively. At the end,

I want to thank to my family, especially my mother, and my darling Şermin

Çamdalı, without them this thesis would not have been realized.

iv

table of contents

abstract . ii

dedicate . iv

CHAPTER

1 Introduction . viii

1.1 Primality Tests . viii

1.2 ECPP Algorithms . ix

1.3 About Thesis... x

2 Some results from Algebra & Number Theory . . . xii

2.1 Introductory arithmetics . xii

2.2 Fermat’s theorem and Special prime numbers xvi

2.3 Results from Algebraic Number Theory xx

2.4 Quadratic Forms . xxiv

3 Preliminaries from the arithmetic of Elliptic curves

xxviii

3.1 Some results from the theory of Elliptic Curves xxviii

3.2 Elliptic curves over C . xxxiv

3.3 Elliptic curves over finite fields Fq xxxvii

3.4 Fast Point Addition and Multiplication xxxix

3.4.1 Point Addition . xl

3.4.2 Fast Point Multiplication xlii

3.5 Point Counting and Other Problems xlix

v

4 Primality Testing and Proving Algorithms li

4.1 Prime Number Generation . lii

4.2 Trial-division Method . lii

4.3 Fermat’s Primality Test . liii

4.4 Probabilistic Primality Testing Algorithms liv

4.4.1 Solovay-Strassen Probabilistic Primality Test liv

4.4.2 Miller-Rabin Probabilistic Primality Test lv

4.5 N − 1 Primality Testing Algorithms lvi

4.5.1 Test . lvii

4.5.2 certificate . lix

4.5.3 Special primes . lix

4.6 N + 1 Primality Testing Algorithms lx

4.6.1 Test . lxi

4.6.2 certificate . lxi

4.6.3 Special primes . lxi

4.7 ECPP Algorithms . lxi

4.7.1 Test . lxii

4.7.2 certificate . lxvi

4.8 Primality Testing in reality . lxvi

5 ECPP (Elliptic Curve Primality Proving) ALGO-

RITHMS .lxviii

5.1 Goldwasser-Kilian ECPP Algorithm lxix

5.1.1 Schoof’s Algorithms . lxix

5.1.2 ECPP Algorithm (Goldwasser-Kilian) lxxii

5.1.3 certificate . lxxiii

5.2 Atkin’s ECPP Algorithm . lxxiii

5.2.1 Generating Elliptic Curves with Complex Multilication . . lxxiii

5.2.2 ECPP ALGORITHM (Atkin) lxxviii

5.2.3 Problems and Approaches lxxx

5.2.4 certificate . lxxxvii

vi

5.3 Remarks . lxxxvii

6 Analysis .lxxxix

6.1 Preliminaries . lxxxix

6.2 Analysis . xc

7 Implementation, LiDIA classes and Conclusion . . . xcii

7.1 Implementation details . xcii

7.1.1 SINGULAR source codes Examples xcii

7.1.2 C + + source codes, used classes and Examples ci

7.2 Conclusion . cxviii

references . cxx

vii

chapter 1

Introduction

1.1 Primality Tests

Primality testing, distinguishing prime numbers from composite ones, goes back

to very old research of number theory due to Eratosthenes who came up with the

first primality testing to efficiently generate the set of prime numbers from 1 to

N in O(N log log N) arithmetic steps by means of the so-called sieve of Eratos-

thenes method in 3rd century BC. Since 17th century, mathematicians have been

studying primality testing methods in order to distinguish prime numbers from

composites and factor integers. Fermat’s little theorem enable us to recognize

most of the composite integers. Owing to the improvements in the area of Data

security and cryptography, in particular public key cryptography, the importance

of finding big primes has been dramatically increased. Using the extended ideas

of Fermat’s theorem, Sollovay and Strassen, in 1977, and Miller and Rabin, in

1980, were developed probabilistic primality tests. Although, the answer prime in

these tests is not always true, even cannot be proven mathematically, these tests

especially Miller-Rabin test have been used in public key cryptography to build

cryptosystems based on factorization of integers, such as RSA and its variants,

and discrete logarithm problem (DLP), such as Diffie-Hellman and ElGamal. Fur-

thermore, the answer composite is always true in both of these primality tests.

Hence, in some texts they are called compositeness tests.

The first general purpose primality testing algorithm was designed by Adle-

man, Pomerence and Rumely [10]. The running time of this algorithm was proved

to be O((log N)c.log log log N) for some effective c > 0. Although, this algorithm

is fast polynomial, has expected polynomial complexity, the first appearance was

viii

not suited to use in practice. Afterwards this algorithm was made practical and

simplified by H. W. Lenstra and Cohen in [32], and then implemented by Cohen

and A. K. Lenstra in [14].

1.2 ECPP Algorithms

In 1985, H. W. Lenstra introduced the usage of elliptic curves in factorization

of integers. After that Goldwasser and Kilian developed an algorithm with the

hope of finding a primality test with the help of groups of rational points of

elliptic curves over finite fields. Their algorithm is called ECPP (elliptic curve

primality proving) algorithm, which uses the DOWN-RUN strategy of the ellip-

tic curve analog of N − 1 primality testing method together with a theoretical

algorithms due to Schoof. They showed that under reasonable hypothesis on the

distribution of primes in short intervals, the expected running time of ECPP is

O(log12 N). After the previous success at producing proofs of compositeness, as

in Sollovay-Strassen and Miller-Rabin, this algorithm produces short proofs of

primality. This proof is called hence certificate of primality.

The major difficulty in the ECPP algorithm of Goldwasser & Kilian is to

find the size of the group of rational points of elliptic curves by means of the

theoretical algorithms due to Schoof. Although, some progress has been made in

the direction of making Schoof’s algorithm practical by Atkin in [48] and Elkies

in [29], Atkin and Morain have found a better idea. They used elliptic curves

with complex multiplication, abbreviated by elliptic curves with CM, instead of

using randomly chosen elliptic curves. Their algorithm, namely Atkin’s ECPP, is

very practical and used to prove the primality of the Titanic numbers, numbers

which have more than 1000-digits, by using weeks of workstation time. Moreover,

as for the Goldwasser-Kilian algorithm, it is easy to verify the correctness of the

result for second programmer, i. e. it gives a certificate of primality for the prime

candidate N which enable to recheck the primality of N much faster.

ix

1.3 About Thesis...

The aim of this thesis is to explain and overview the important primality testing

methods and Atkin’s ECPP algorithm. It consists of the following chapters:

• We will start with basic facts coming from algebra and number theory.

In particular, we will explain imaginary quadratic number number fields,

quadratic forms and Cornacchia’s algorithms, which are the basic algebraic

results used in our primality tests and ECPP algorithm.

• In chapter 3, elliptic curves and their arithmetic related with primality

proving will be intensively explained and the necessary background will be

covered. In this chapter, we will also see how one can deal with problems

coming together with the computations of the groups of rational points

of elliptic curves over different fields and in particular over finite fields Fq,

where q = pr, r ∈ N and p is a prime. Further, we will also shortly overview

the curves with CM and their relation between imaginary quadratic number

fields and forms.

• We will overview some primality testing methods in chapter 4. Furthermore,

we will introduce the so-called Poclingston’s theorem andN−1 (resp. N+1)

primality testing method, which is a primality testing algorithm based on

the full or partial factorization of N − 1 (resp. N + 1), where N is a prime

candidate. This method will enable us to introduce the general idea and

DOWN-RUN strategy of the ECPP algorithms that we will also give in a

general form.

• In chapter 5, we will explain our ECPP algorithms of Goldwasser-Kilian and

Atkin, respectively. We will overview the approaches of dealing with point

counting problem of elliptic curves over finite fields, such as the theoretical

algorithm of Schoof used in Goldwasser-Kilian ECPP algorithm and CM-

method in our Atkin’s ECPP algorithm. Moreover, we will see different

methods and approaches to improve and optimize the Atkin’s algorithm at

the end of the chapter.

x

• The running time analysis of both Goldwasser-Kilian and Atkin will be

summarized in chapter 6.

• At the end, we will give implementations of some primality testing methods

and some parts of Atkin’s ECPP algorithm together with the examples.

The computer package LiDiA was used to implement and give examples of

these algorithms in the programming language C++. Some of the number

theoretical functions and primality tests were implemented in computer

algebra system SINGULAR, too.

xi

chapter 2

Some results from Algebra &

Number Theory

In this chapter, we will briefly explain the necessary theory and background

coming together with elementary number theory, quadratic forms and imaginary

quadratic number fields. All subjects have enormous literature. We begin with

some arithmetical results which are basics of our discussions later on. At the

first, basic arithmetical tasks related to prime numbers will be introduced. We

will give the Fermat’s little theorem which will be a basic theoretical result in

our all primality testing and proving algorithms. Secondly we will review the

preliminaries of algebra and algebraic number theory which are related to our

N − 1 (resp. N + 1) and ECPP Algorithms. Especially the quadratic forms will

be the basic analogous number-theoretic result of our ECPP Algorithms.

2.1 Introductory arithmetics

We will review in this section some arithmetical properties coming from Alge-

bra which are necessary to develop and define our theoretical results for prime

numbers.

Definition 2.1. Let R be a ring and a, b ∈ R. Then b is called divisible by a or

a divides b if there exists c ∈ R with b = a.c.

Remark 2.1. a | b (if a divides b), otherwise a - b (if a does not divide b).

Furthermore, we have; 0 | a⇔ a = 0.

xii

Definition 2.2. a ∈ R is called an identity if a | 1, i. e. ∃c ∈ R such that 1 = a.c.

So by definition c is also a an identity and c = a−1 is then the multiplicative

inverse of a in R.

Definition 2.3. a, b ∈ R are called associate if a | b and b | a simultaneously.

Corollary 2.1. (R∗, .) is an abelian group.

Proof : See reference [17].

Definition 2.4. Let a ∈ R, a 6= 0 and a is not an identity element. Then a is

called irreducible if from the decomposition a = b.c, b, c ∈ R we get b ∈ R∗ or

c ∈ R∗. If a is not irreducible, then it is called composite.

Definition 2.5. Let p ∈ R, p 6= 0 and p is not an identity element. Then p is

called prime element or just prime if from p | b.c with b, c ∈ R we get p | b or

p | c.

Remark 2.2. In general prime 6= irreducible

Question: When we have equality?

Proposition 2.1. If R is an integral domain, then each prime element a ∈ R is

irreducible.

Proof : See reference [17].

But again for a general integral domain the inverse of the above proposition

is false (irreducible ; prime). In fact, we need an analog algebraic structure

which have a division property like integers. Our structure must be in this sense

euclidean rings.

Proposition 2.2. LetR be a euclidean ring, then each irreducible element a ∈ R
is prime.

Proof : See reference [17].

As we see from the above two propositions we can conclude that in euclidean

rings primes = irreducibles (as every euclidean ring is an integral domain).

xiii

Uniqueness of decomposition of prime elements

Lemma 2.1.1. Let R be a euclidean ring, a ∈ R, a 6= 0. If a /∈ R∗, then there

exists a prime element which divides a.

Proof : see reference [17].

Theorem 2.1. Let R be a euclidean ring, a ∈ R, a 6= 0.

1. Either a ∈ R∗ or a can be written as a product of prime elements, i.e.

∃s ∈ N and prime elements p1, . . . , ps so that

a =
s∏
i=0

pi.

2. Let a =
∏t

j=0 qj be an another factorisation of a. Then s = t and there

exists a permutation of the set {1, . . . , s} such that pi & qπ(i) are associate.

Actually above theorem tells us that each element of a euclidean ring can be

written in terms of prime elements (equivalently irreducible elements). We will

use this idea in our special case R = Z in the next section so as to conclude that

every natural number has a unique prime number decomposition!

We will end this basic section with the definition of a greatest common divisor

and the general version of so-called euclidean algorithm.

Definition 2.6. Let R be an integral domain, a, b ∈ R, d be a common divisor

of a & b. Then d is called a greatest common divisor, abbreviated by gcd, of a &

b, if d′ | d for all common divisor d′ of a & b.

Lemma 2.1.2. Let R be a principal ideal domain, a, b ∈ R and I = (a, b) be an

ideal of R which is generated by a and b. If I = (d) with d ∈ R, then d is a gcd

of a and b.

Proof : see reference [17].

xiv

Theorem 2.2. Euclid Algorithm Let R be a euclidean ring with euclid func-

tion ψ, a, b ∈ R b 6= 0, I = (a, b).

Set r0 = a; r1 = b and ∀i ≥ 0 ri = qi.ri+1 + ri+2 such that ri+2 = 0 or

ψ(ri+2) < ψ(ri+1).

Then ∃ a smallest natural integer κ with rκ 6= 0 but rκ+1 = 0 and I = (rκ).

Proof : See reference [17].

This theorem implies that for a given a, b ∈ R it is possible to find a gcd d of

a and b. Note that there exist x, y ∈ R such that d = ax+ by. Also note that in

the general case gcd is not unique!

Remark 2.3. One can also give for this general case the so-called extended eu-

clidean algorithm which simultaneously computes d, x and y. See reference [17]

and [46].

At the we will give our first algorithm, namely extended GCD algorithm for

integers, in a pseudo-code.

ALGORITHM:extended GCD

Input: Given a, b ∈ Z with a ≥ b,

Output: d = gcd(a, b) and integers x, y satisfying ax+ by = d,

1. If b = 0, then set d← a, x← 1, y ← 0, and return(d, x, y);

2. Set x2 ← 1, x1 ← 0, y2 ← 0, y1 ← 1;

3. While b > 0 do the following:

(a) q ← ba/bc, r ← a− qb, x← x2 − qx1, y ← y2 − qy1,

(b) a← b, b← r, x2 ← x1, y2 ← y1, and y1 ← y,

4. Set d← a, x← x2, y ← y2, and return(d, x, y).

At the end of this section, we are going to review the so-called Chinese Re-

mainder Theorem, abbreviated by CRT for the general case.

xv

Theorem 2.3. Chinese Remainder Theorem Let R be a euclidean ring,

t ∈ N and m1, · · · ,mt ∈ R such that mi and mj are coprime to each other for

i 6= j. Then we have

R/mR ∼=
t⊕
i=1

R/miR.

Proof: see reference [17].

Corollary 2.2. Let R be a euclidean ring, t ∈ N and m1, · · · ,mt ∈ R such

that mi and mj are coprime to each other for i 6= j. Furthermore, assume that

a1, · · · , at ∈ R are given. Then ∃ x ∈ R with x ≡ ai mod(mi) for 1 ≤ i ≤ t.

Additionally, x mod
(
m =

∏t
i=1m1 · · ·mt

)
is uniquely determined.

Proof: immediate by CRT!

2.2 Fermat’s theorem and Special prime num-

bers

In this section we are going to revisit some properties of prime numbers. After-

wards, Fermat’s little theorem and related results will be discussed. At the end

we will see some special prime numbers. Their primality can be tested more easier

as we will see in Chapter 4.

Hier we have R = Z. Obviously Z is euclidean. Further its prime elements,

which are > 0, are called w.l.o.g. prime numbers (Prime elements of Z are p and

−p, where p is a prime number).

Theorem 2.4. Euclid There are infinitely many prime numbers.

Proof : Let M be the set of all prime numbers. M 6= ∅ as 2 ∈ M. Let now

p1, . . . , pk be the distinct prime numbers and k ≥ 1. Let Q = 1 +
∏k

1=0 pi by

lemma 2.1.1 ∃P which divides Q.

Let P = pi ⇒ P | Q−
∏k

i=0 pi ⇒ P | 1 ⇒ contradiction to the assumption that

pi is prime ∀i, 1 ≤ i ≤ k.

xvi

By theorem 2.1 we can conclude that each natural number n has a unique

prime factorisation. Then ∃s ∈ N and prime numbers p1, . . . , ps such that

n =
s∏
i=0

pi.

Notation: If we write down the same primes together we get

n =
t∏
i=0

pei
i ,

pi 6= pj if i 6= j, ei ∈ N. This is called canonical prime factor decomposition of n.

Theorem 2.5. Prime number Theorem Let π(x) be number of primes smaller

than ’x’ where x ∈ R. Then

lim
x→∞

π(x). log x

x
= 1.

Remark 2.4. 1. Some cryptosystems like RSA needs big prime numbers, such

as prime numbers of exactly 128 bits in its binary representations. How

many does such primes exist?

By using Prime number theorem, we have approximately π(2128)−π(2127) =
2128

128. log 2
− 2127

127. log 2
(≈ 1, 906.1036 primes).

2. This theorem, as we see above, will be very useful in running time analysis

of our algorithm in chapter 6.

Now we will give the definition of Legendre- and Jacobi-Symbols;

Definition 2.7. Legendre-Symbol Let p > 2 be a prime number and a ∈ Z

then

(
a

p
) =


−1 if a is a quadratic non− residue

0 if gcd(a, n) 6= 1

+1 if quadratic a is a residue

Of course we can generalize this definition for any odd integer N instead of a

prime number p.

xvii

Definition 2.8. Jacobi-Symbol Let N =
∏k

i=0 p
ei
i be an odd integer with all

pi’s prime and a ∈ Z. Then (a
N

) is defined as follows:

(
a

N
) = (

a

p1

)e1(
a

p2

)e2 . . . (
a

pk
)ek .

ALGORITHM:Jacobi-Symbol

Input: Given a,N ∈ Z,

Output: Legendre resp. Jacobi-Symbol (a
N

) ,

1. (Test N = 0) if N = 0 output 0 if | a |6= 1,if | a |= 1 then terminate the

algorithm;

2. (Remove 2’s from N) if gcd(a,N, 2) = 1, output 0 and terminate the

algorithm.Otherwise,

(a) v ← 0 and while v is even set v ← v + 1 and N ← N/2

(b) if v is even k ← 1, otherwise set k ← (−1)
(a2−1)

8

(c) if N < 0 set N ← −N and if in addition a < 0 set k ← −k;

3. (finished?) (Here clearly N is odd and positive)

(a) if a = 0 then output 0 if b > 1, k if b = 1

(b) otherwise set v ← 0 and while a is even do v ← v + 1 and a← a/2

(c) if v is odd set k ← (−1)
(b2−1)

8 k;

4. (Apply reciprocity law) k ← (−1)
(a−1)(b−1)

4 k. Then r ←| a | and a ←
b mod(r), b← r and GOTO 3;

As we already said that our basic number theoretical result is due to Fermat.

Fermat’s little theorem and the generalization of its inverse (actually inverse is of

course not true!) will be our basic results in our primality testing and afterwards

proving algorithms. We will review the results coming with Fermat’s theorem.

Theorem 2.6. Fermat’s Little Therem Let p be a prime number and a ∈ N
with gcd(a, p) = 1 then ap−1 ≡ 1 mod(p).

xviii

Proof See reference for example [17].

Definition 2.9. A composite number N is said to be pseudoprime to the base a,

denoted by psp(a), a ∈ Z , 1 ≤ a ≤ N − 1, if aN−1 ≡ 1 mod(N).

Definition 2.10. A composite number N is said to be euler pseudoprime to the

base a, denoted by epsp(a), a ∈ Z , 1 ≤ a ≤ N − 1, if a
N−1

2 ≡
(
a
n

)
mod(N).

Proposition 2.3. For all odd number a ∈ N there are infinitely many psp(a)’s

and epsp(a)’s.

Proof See reference [17].

Proposition 2.4. let p be an odd prime , p − 1 = 2l.m, where m is odd, a ∈ Z

with gcd(a, p) = 1. Then either am ≡ 1 mod(p) or there exists some j with

0 ≤ j ≤ l such that a2j .m ≡ −1 mod(p)

Proof See reference [17].

Definition 2.11. If N is composite and the above conditions are satisfied for

a ∈ Z then N is called a strong pseudoprime to the base a, abbreviated by

spsp(a).

Special Prime Numbers

Lemma 2.2.1. Let a, b ∈ N and a | n. Then 2a − 1 | 2n − 1.

Proof : See reference [17].

Corollary 2.3. If Mn = 2n − 1 is a prime, then n is a prime. Such primes are

called Mersenne Primes

Proof : Trivial by above lemma.

Lemma 2.2.2. IfMp is prime then n = 2p−1.Mp is a perfect number. Conversely

each even perfect number n has the form n = 2p−1.Mp where Mp is a Mersenne

prime

xix

Proof : Due to Euclid see reference [17].

Lemma 2.2.3. If N = 2m + 1 is prime then m = 2n. The numbers Fn = 22n
are

called Fermat numbers.

We will discuss in Chapter 4, how for these special prime numbers we can

apply our tests.

2.3 Results from Algebraic Number Theory

In this section we will give the necessary background from the theory of algebraic

number theory. We are going to explain quadratic forms and their relation with

imaginary quadratic number fields, which are basics of the theory of Complex

Multiplication, abbreviated by CM-theory, that we will see in next chapter. These

results together with CM-theory will enable us to give N − 1 analog of a prime

number test actually our algorithm due to Atkin. Most of the results needed to

introduce our algorithm and related literature and references will also be given.

Note that up to now we have just introduced the number theoretical results

which are basics of all Primality testing algorithms. We also introduce in Chapter

4 the so-called Jacobi Sum Test which is also a true primality testing algorithm.

However, we will not give the prerequisite theory of that algorithm as it is outside

the scope of this thesis. The necessary background can be covered from the book

of Cohen [1].

Arithmetic in Quadratic Number Fields

Let D ∈ Z, let
√
D ∈ C be a root of the polynomial X2 −D. Then

Q(
√
D) := {a+ b.

√
D | a, b ∈ Q} ⊆ C.

Then Q(
√
D) is a field, namely quadratic number field. If D < 0 (D > 0), then

it is called complex (real resp.).

Remark 2.5. Q(
√
D) is a Q-vector space of dimension 2, a basis for example

P1 = (1, 0) and P2 = (0,
√
D).

xx

WLOG we can assume that D is a squarefree integer. i. e. D 6≡ 0 mod(4).

Consider just D ≡ 1, 2, 3 mod(4).

Definition 2.12. The map σ : Q(
√
D)→ Q(

√
D);

σ(a+ b.
√
D) = a− b.

√
D is called conjugate.

Here are some properties of the conjugate map σ :

1. σ(α± β) = σ(α)± σ(β), ∀α, β ∈ Q(
√
D),

2. σ(α.β) = σ(α).σ(β), ∀α, β ∈ Q(
√
D),

3. σ(α
β
) = σ(α)

σ(β)
, ∀α, β ∈ Q(

√
D) provided that β 6= 0,

4. σ(β) = 0 if and only if β = 0.

Theorem 2.7. Let D be a square free integer. Then Q(
√
D) is a field with

Q ⊆ Q(
√
D) ⊆ C. Each α ∈ Q(

√
D) has a unique representation of the form

α = a+ b.
√
D, a, b ∈ Q.

The map σ is an automorphism of Q(
√
D) which fixes Q pointwise.

Proof : See reference. [17].

Definition 2.13. α′ = σ(α) Norm-function: N(α) = α.α′ and trace-function:

T (α) = α+ α′

Hence for a given α = a+ b.
√
D we have N(α) = a2 − b2.D and T (α) = 2a.

Theorem 2.8. 1. The function S : Q(
√
D) → Q is an epimorphism of addi-

tive groups.

2. if α ∈ Q(
√
D), then we have N(α) = 0 if and only if α = 0 (as D 6= 2) the

function S∗ : Q(
√
D)∗ → Q∗ is a homomorphism of multiplicative groups.

xxi

Now let α = a+ b
√
D ∈ Q(

√
D) then we get a relation

α2 = a2 + 2ab
√
D + b2D = 2a︸︷︷︸

S(α)

(a+ b
√
D)− a2 − b2D︸ ︷︷ ︸

N(α)

⇒ α2 − S(α).α+N(α) = 0.

Corollary 2.4. Every α ∈ Q(
√
D) is a root of a polynomial in Q[x] of degree

≤ 2. A monic polynomial µα ∈ Q[x] with minimal degree such that µα(α) = 0 is

called minimal polynomial of α. Further, µα is uniquely determined.

Definition 2.14. Let α ∈ Q(
√
D). Then α is called an algebraic integer if

µα ∈ Z[x].

Now we have actually three cases for minimal polynomials of having algebraic

integers:

• Let α ∈ Z ⇒ µα = x− α ∈ Z[x],

• Let α ∈ Q− Z ⇒ µα = x− α /∈ Z[x],

• Let α ∈ Q(
√
D) − Z; α is an algebraic integer ⇔ both T (α) ∈ Z and

N(α) ∈ Z.

Lemma 2.3.1. Let α ∈ Q(
√
D). Then α is algebraic integer if and only if

α has the form

α =

{
1
2
(a+ b

√
D), a, b ∈ Z if a ≡ b mod(2) for D ≡ 1 mod(4)

a+ b
√
D, a, b ∈ Z if D ≡ 2, 3 mod(4)

Proof : See reference [17].

Let OD be the set of all algebraic integers of Q(
√
D). Then we have the

following corollary and theorem;

Corollary 2.5. OD is a ring. Moreover, it is an integral domain.

Proof : trivial by above lemma.

xxii

Theorem 2.9. OD is a free Z-Module of Rank 2, OD has Z-Basis (1, wD) with

wD =

{ √
D if D ≡ 2, 3 mod(4)

1
2
(1 +

√
D) if D ≡ 1 mod(4)

Moreover, OD ∼= Z⊕ wD.Z.

Definition 2.15. Imaginary quadratic discriminant of an imaginary quadratic

number field K = Q(
√
−d), d > 0, square free is equal to

D =

{
d if D ≡ 3 mod(4)

4d if D 6≡ 3 mod(4)

.

Corollary 2.6. The set of all algebraic numbers in K can be given by the fol-

lowing isomorphy;

OK =

{
Z + Z

√
−d if d 6≡ 3mod(4)

Z + −1+
√
−d

2
Z if d ≡ 3mod(4)

.

Definition 2.16. Order of an imaginary quadratic number field An order

O in K is a subring of K which is as a Z-Module finitely generated and of maximal

rank n = deg(K).

Definition 2.17. An ideal α of O is a sub-O-module, i. e. a sub-Z-module of O
such that every r ∈ O and i ∈ α we have r.i ∈ α.

Definition 2.18. An ideal α is said to be principal ideal of O, if there exists

x ∈ K such that α = xO. Furthermore O is a principal ideal domain (PID) if O
is an integral domain (for orders it is always the case) and if every ideal α of O
is a principal ideal.

Assume OK is principal order of an imaginary quadratic number field K. Then

O ⊂ OK .

xxiii

Definition 2.19. Two ideals α, β are said to be equivalent, if there exist a, b

∈ K∗ with a.α = b.β.

Equivalent classes form an ideal class U . Every ideal class of OD has an ideal

of the form;

aZ +
−b+

√
−D

2
Z for a ∈ N, b ∈ Z

with additionally c = (b2 +D)/4a ∈ Z and gcd(a, b, c) = 1.

Definition 2.20. A fractional ideal i of O is a non-zero submodule of K such

that there there exists a non-zero integer d with di an ideal of O.

Definition 2.21. Let i be a fractional ideal of O. We say that i is invertible if

there exists a fractional ideal j of O such that O = ij. Such an ideal j is then

called inverse of the ideal i.

Lemma 2.3.2. Let i be a fractional ideal, and set

i′ = {x ∈ K, xi ⊂ O},

then i is invertible if and only if ii′ = O. Moreover, if this equality is true, then

i′ is unique inverse of i and denoted by i−1.

Proof : immediate!

2.4 Quadratic Forms

In this section we will introduce the quadratic forms and their relations with

imaginary quadratic number fields and discriminants. In fact, the idea is that

quadratic forms & invertible fractional ideals of imaginary quadratic order O are

the same structure in an imaginary quadratic number field K. This equivalence

will enable us to find an another one in the next chapter, the equivalence be-

tween lattices Λ ⊂ C and hence the equivalence between elliptic curves over C,

which will be then particularly used in CM-theory and at the end in our ECPP

algorithm.

xxiv

Definition 2.22. A binary quadratic form over Z is a map:

f : Z2 → Z f(x, y) = ax2 + bxy+ cz2, a, b, c ∈ Z with discriminant D = 4ac− b2.
This form is called primitive if gcd(a, b, c) = 1. Hence, it can be identified as a

triple, i. e. f = (a, b, c).

Remark 2.6. Quadratic orders can be also represented in terms of matrices

f(x, y) = (x, y)
(a

b/2

b/2

c

)
︸ ︷︷ ︸

Mf

(
x

y

)

Definition 2.23. Two binary quadratic forms f & g are said to be equivalent,

abbreviated by (f ∼ g), if ∃A ∈ SL(2,Z) with Mg = A−1.Mf .A.

This is obviously an equivalence relation.

Definition 2.24. Binary quadratic forms f in equivalence classes [f] form a

group called form class group, and denoted by Cl(D).

Let’s analyse this equivalence classes a little bit more;

Corollary 2.7. Each equivalence class contains exactly one form (a, b, c) with

a, b& c are relatively prime and satisfy the following;

| b |≤ a ≤ c & (| b |= a or a = c⇒ b > 0). Such a form is called reduced.

Proof : See reference [11].

Theorem 2.10. Let OK be a principal order of an imaginary quadratic number

field K, and D be an imaginary quadratic discriminant of OK . Then define a

map;

φ : f(x, y) = ax2 + bxy + c2 7−→ aZ +
−b+

√
−D

2
Z

with D = b2 − 4ac.

Then φ is a bijection between form class group Cl(D) and the ideal class group

Cl(O).

Proof : See reference [11].

xxv

This theorem says us that ;

| Cl(D) |=| Cl(OD) | which implies that h(OD) = h(D)

Review: h(OD) (and h(D)) is by definition the cardinality of Cl(OD) (car-

dinality of Cl(D), respectively).

Definition 2.25. Let D be an imaginary quadratic discriminant, n ∈ Z and

f = (a, b, c) be a quadratic form with discriminant D. If ∃(x,w) ∈ Z2 such that

n = ax2 + bxw + w2 = f(x,w)

Then n can be represented by means of the function f . Such an n is called Norm

of an element of OD if there exists π ∈ OD with n = ππ̄.

Question: When have we such a form and how can we compute it?

Lemma 2.4.1. Let D be an imaginary quadratic discriminant n ∈ Z. There

exists π ∈ OD with n = ππ̄ if and only if 4n = t2 +Dy2 has a solution (t, y) ∈ Z2.

We will end this section to explain the method to compute these diaphontine

equations. Note that it is not always the case that such a solution exists. In

order to find such a pair (t, y), we can use so-called Cornaicchia’s Algorithm

which also give us a chance to know whether or not such a solution exists. This

algorithm computes essentially for a given rational the continued fraction of the

square root. This idea was also used so as to factor the integers. Note that finding

such a pair is equivalent to solving p = x̃2 + dỹ2 for a prime number p. Note

that this algorithm will be also used in CM-Theory of elliptic curves for a given

discriminant D.

ALGORITHM: Cornaicchia’s Algorithm

Input: Given a square free integer D and a prime number p,

Output: A solution to p = x̃2 + dỹ2, if exists,

1. Let p/2 < x0 < p be solution to x2 ≡ −D mod(p);

2. p← q0x0 + x1, k ← 0;

xxvi

3. Until x2
k < p ≤ xk−1 do;

(a) xk ← qk+1xk + 1 + xk+2 k ← k + 1,

(b) x̃← xk, ỹ ←
√

(p− x2
k)/d,

4. if ỹ ∈ Z return (x̃, ỹ), else return ’No Solution’;

One can also modify the algorithm to get a more efficient method. Here is

the modified version of Cornacchia due to Cohen. In this method we also do

not need to use (x̃, ỹ) transformation;

ALGORITHM: Modified Cornaicchia’s Algorithm

Input: Given a square free integer D and a prime number p such that D ≡ 0 or

1 mod(4) and | D |< 4p,

Output: A solution to 4p = x2 + dy2, if exists,

1. (Case p = 2) If D + 8 is a square of a natural number return (
√
D + 8, 1),

otherwise return ’No Solution’;

2. (Test if it is residue) using Jacobi-Algorithm compute k ←
(
D
p

)
. If

k = −1 return ’No Solution’;

3. (Compute square root) Compute an integer x0 such that x2
0 ≡ D mod(p)

and 0 ≤ x0 < p;

(a) Set x0 ← p− x0 if x0 6= D mod(2),

(b) Set a← 2p, b← x0, and l← b2√pc

4. (Euclidean Algorithm) if b > l, set r ← a mod b, a ← b, b ← r and

GOTO step 4;

5. (Test Solution) If | D | does not divide 4p− b2 or if C = (4p− b2)/ | D |
is not the square of an integer return ’No Solution’. Otherwise return

(x, y) = (b,
√
c).

xxvii

chapter 3

Preliminaries from the

arithmetic of Elliptic curves

In this chapter, we will introduce some important results coming together with

the arithmetic of elliptic curves over different fields. Elliptic curves have an

extensive literature as they are used in many branches of both theoretical and

applied mathematics and are closely related with the theory of elliptic functions,

from which they derive their name. Elliptic curves have been used and studied

in the recent in the proof of Fermat’s last Theorem. They have been also used in

factorization of integers, cryptography, and as in our case primality proving for

more than two decades. Elliptic curves have an extensive usage in cryptography,

in particular public key Cryptography, since it is possible to reach a reasonable

security when we compare with other cryptosystems like RSA. Furthermore the

same level of security can be gained with a reasonable smaller key sizes, and hence

of smaller memory and processor requirements. Additionally, they give a chance

to construct cryptosystems based on Discrete Logarithm Problem, abbreviated by

DLP. In primality proving, an analog method like N − 1 tests will be developed

by means of complex multiplication (CM-) method of of elliptic curves.

3.1 Some results from the theory of Elliptic Curves

Definition 3.1. Let F ∈ R[x, y] be a polynomial of degree d (F 6= 0). Then

C := {(x, y) ∈ R2 | F (x, y) = 0}

is called a curve of degree d.

xxviii

LetK be a field and K̄ be an algebraic closure ofK, let further (x0, x1, . . . , xn) ∈
K̄n+1−{0}. Define (x0 : x1 : . . . : xn) as a unique line between 0 and (x0, x1, . . . , xn).

Definition 3.2. The n-dimensional projective space over K̄ is the set;

Pn = {(x0 : x1 : . . . : xn) | (x0, x1, . . . , xn) ∈ K̄n+1 − {0}}.

Notation: n-dimensional projective space over K̄ is also denoted by Pn
K̄.

Definition 3.3. 1. A point (x0 : x1 : . . . : xn) ∈ Pn is said to be a k-rational

point, if there exists λ ∈ K∗ so that

λ(x0 : x1 : . . . : xn) ∈ K̄n+1.

The set of all k-rational points of Pn is abbreviated by Pn(K).

2. (x0 : x1 : . . . : xn) are called homogene coordinates of Pn.

Definition 3.4. A subset C ∈ P2 is called an algebraic curve, if ∃ a non-constant

homogene polynomial F ∈ K̄[x, y, z] such that C = V (F).

Remark 3.1. Define Lz := V (z) ⊂ P2, so that

Lz = {(x : y : z) ∈ P2 : z = 0} ∼= P1.

Then there is an isomorhism

ϕz : Uz := P2 − Lz → K̄2 such that
(
(x:y:z)→(x/z,y/z)

(s:t:1)←(s,t)

)
Then Uz is called affine part of P2 and Lz ∼= P1 is called line at infinity.

Definition 3.5. Let C ∈ P2 be an algebraic curve. The affine part of C is the

subset

C ′ := C ∩ Uz.

Definition 3.6. An algebraic curve of degree d is said to be smooth, if there

exists a polynomial F ∈ K[x, y, z] of degree d such that

C = V (F) and (∂F
∂x

(P), ∂F
∂y

(P), ∂F
∂z

(P)) 6= (0, 0, 0) ∀P ∈ C.

xxix

Notation: Let ip(C,L) := denote the number of points of C
⋂
L, where L is

another line (resp. curve).

Theorem 3.1. Bezout’s theorem Let C1, C2 be two smooth algebraic curves

in P2. Then ∑
P∈C1

⋂
C2

ip(C1, C2) = deg(C1).deg(C2).

Proof: see reference [18].

Definition 3.7. Let C = V (F) be a smooth algebraic curve of degree d, deg(F) =

d. Then Hesse-curve of C is the set

HC := V (det(
∂2F

∂xi∂xj
)0≤i,j≤2) ⊂ P2

.

Remark 3.2. • For d ≤ 2, we have det(∂2F
∂xi∂xj

) is constant, and hence not a

curve in the concept of the definition 3.4.

• if det(∂2F
∂xi∂xj

) 6= 0, then HC is also a smooth algebraic curve of degree

3d(d− 2) if d ≥ 3.

Definition 3.8. A point P ∈ C is called an inflection point, if there exists a

tangent L of C at the point P such that ip(C,L) ≥ 3. Then L is called inflection

tangent of C at P .

Theorem 3.2. (Let char(K) 6= 2) P ∈ C is an inflection point if and only if

P ∈ C ∩HC .

Proof : See reference [18].

Remark 3.3. By Bezout’s theorem, there are at most 3d(d − 2) and at least 1

inflection points over an algebraic curve C.

Definition 3.9. Let C be a smooth algebraic curve of degree 3 and O ∈ C be

an inflection point. Define

+ :

(
C × C −→ C

(P,Q) 7→ P +Q

)

xxx

as follows;

Let P̄Q be the line connecting P&Q (tangent if P = Q), Then by Bezouts we

have P̄Q ∩ C = {P,Q,R} (with multiplicity). Let ŌR be the line connecting

O&R then ŌR ∩ C = {O,R,C}.
Define P +Q := S.

Properties of the function ’+’:

1. ∀P ∈ C we have P +O = P (as O is an inflection point)

2. ∀P,Q ∈ C we have P +Q = Q+ P .

3. ∀P ∈ C consider ¯PO ∩ C = {P,O, Q}.Set: −P := Q

since: ¯P (−P) ∩ C = {P.O,−P} and ŌO ∩ C = {O,O,O} as O is an

inflection point, we have P + (−P) = O.

4. ∀P,Q,R ∈ C: we have (P +Q) +R = P + (Q+R)

Proof : See reference [16]. Hence we can conclude that (C,+) is an abelian

group.

Definition 3.10. An Elliptic Curve is the pair (E,+) where E is a smooth

algebraic curve of degree 3 and + is a group structure like above.

Remark 3.4. The choice of O as an inflection point is not necessary. However

if we choose O as an inflection point we have the following nice property:

P +Q+R = O ⇔ P,Q and R are collinear.

Remark 3.5. Let m ∈ Z. Then we define;

m.P =


P + P + · · ·+ P︸ ︷︷ ︸

m−times

if m > 0

0 if m = 0

−(| m |).P if m < 0

Theorem 3.3. Weierstrass Normal Form Let E be an elliptic curve and O
be an inflection point, let also E = V (F) with deg(F) = 3. Then there exists a

xxxi

projective transformation ϕA

ϕA : P2 → P2

so that Ẽ = V (F̃) with

F̃ (X, Y, Z) = F (ϕA(X, Y, Z)) = Y 2Z+a1XY Z+a3Y Z
2−x3−a2X

2Z−a4XZ
2−a6Z

3

Moreover, ϕ−1
A (O) = (0 : 1 : 0) is the unique point at infinity of Ẽ.

Proof : See reference [16].

Remark 3.6. With a coordinate transformation, elliptic curve E ′ is an affine

curve, i. e.

E ′ = E ∪ Uz = {(x, y) ∈ K̄2 : y2 + a1XY + a3Y = x3 + a2X
2 + a6}

plus a point at infinity O = (0 : 1 : 0).

Remark 3.7. For char(K) 6= 2, 3 there is an easier normal form with respect to

a coordinate exchange. Then E has a form for E = V (F)

F (X, Y, Z) = Y 2 −X3 − aXZ2 − bZ3 and ∃a, b ∈ K̄

that means;

E = {(X, Y) ∈ K̄2 : Y 2 = X3 + aX + b} ∪ {(0 : 1 : 0)}

Proof :See [6].

Lemma 3.1.1. Let E be an elliptic curve, then E is smooth if and only if 4a3 +

27b2 6= 0.

Proof : trivial...

Theorem 3.4. Let char(K̄) 6= 2, 3. Further let E = V (F) be an elliptic curve

with F (X, Y, Z) = Y 2Z −X3 − aXZ2 − bZ3 with a, b ∈ K̄ (particularly: 4a3 +

xxxii

27b2 6= 0). Moreover, assume that P,Q ∈ E, P,Q 6= 0 and P 6= −Q and w.l.o.g.

we have P = (x1, y1, 1) & Q = (x2, y2, 1). Then we have;

P +Q = (λ2 − x1 − x2 : −λ(λ2 − x1 − x2)− µ : 1)

with λ := y2−y1
x2−x1

and µ := y1x2−y2x1

x2−x1
if P 6= Q. If we have P = Q. Then ;

λ :=
3x2

1+a

2y1
and µ :=

−x3
1+ax1+2b

2y1
.

Proof : See [16].

Remark 3.8. If we have y1 = 0⇒ P = −P as we have−(x : y : 1) = (x : −y : 1).

Remark 3.9. Of course for the general Weierstrass normal form, i. e. if we have

char(K̄) = 2, 3, the generalized version of this addition process can be applied.

See [7].

Definition 3.11. An endomorphism φ of an elliptic curve E is a map

φ : E → E with φ(∞) = ∞. The set of all endomorphisms of an elliptic curve

forms a ring and is abbreviated by End(E).

For the structure of the endomorphism ring End(E) we have three choice,

namely;

1. End(E) = Z (not possible for curves over finite fields),

2. End(E) is an order of an imaginary quadratic number field,

3. End(E) is the maximal order of a quarternion algebra.

Remark 3.10. We will discuss the second case in detail in CM-theory later!

Definition 3.12. If we have Z (End(E), then we say that E has complex

multiplication, denoted by E with CM.

Definition 3.13. The j-invariant of an elliptic curve E with ∆ 6= 0 is defined as

a constant j(E) = 1728. (4a)
3

∆
where ∆ = 4a3 + 27b2.

xxxiii

Lemma 3.1.2. Let E1 and E2 be two elliptic curves over an algebraically closed

field K. Then E1 and E2 are isomorphic if and only if j(E1) = j(E2).

Proof: see [6].

Remark 3.11. 1. If we have j = 0 (resp. j = 1728), we have a = 0 and b = 1

(resp. a = 1 and b = 0).

2. One can also show that for every j ∈ K, there exists an elliptic curve E

with j(E) = j.

3.2 Elliptic curves over C

Definition 3.14. Given a lattice Λ in C with Λ = {nw1 +mw2 | n,m ∈ Z} with

w1, w2 ∈ C∗, w1

w2
/∈ R.

1. A meromorphic function f is said to be elliptic if f(z+w) = f(z), ∀w ∈ Λ.

2. Weierstrass ℘-function associated to Λ is given by

℘(z;w) = z−2 +
∑

w∈Λ\{0}

(
(z − w)−2 − w−2

)
.

Then we have

℘(z; Λ) : z 7→

{
℘(z;w) = z−2 +

∑
w∈Λ\{0} ((z − w)−2 − w−2) if z /∈ Λ

∞ if z ∈ Λ

.

Theorem 3.5. Weierstrass ℘-function is meromorphic, and it is elliptic (double-

periodic) and satisfies the following differential equation;

℘
′
(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ)

with the constants g2(Λ) = 60
∑

w∈Λ\{0}
1
w4 and g3(Λ) = 140

∑
w∈Λ\{0}

1
w6 .

xxxiv

ProofSee reference [6].

Definition 3.15. Two lattices Λ1 and Λ2 are said to be homothetic, if there exists

λ ∈ C such that Λ1 = λΛ2.

Definition 3.16. The j-invariant of a lattice Λis a complex number

j(Λ) = 1728.
g2(Λ)3

g2(Λ)3 − 27g3(Λ)2
= 1728.

g2(Λ)3

∆(Λ)

.

Theorem 3.6. Two lattices Λ1 and Λ2 are homothetic if and only if they have

the same j-invariant.

Proof: See reference [6].

Theorem 3.7. Let E = (a, b) be an elliptic curve over C. Then there exists

a uniquely defined lattice Λ ⊂ C so that a = −g2(Λ)/4 and b = −g3(Λ)/4

respectively.

Proof: See [6].

Proposition 3.1. Let O be an order in an imaginary quadratic number field K,

i be an invertible fractional ideal. Then i can be considered as a lattice over C.

Proof: See [6].

Theorem 3.8. Let Λ be a lattice, and ℘(z; Λ) the Weierstrass ℘-function. Fur-

thermore, assume we have α ∈ C\Z. Then the followings are equivalent;

1. ℘(αz) is a rational function.

2. αλ ⊂ Λ.

3. There exists an order O in an imaginary quadratic number field and Λ is

homothetic to an invertible fractional ideal of that order O.

Proof: See [6] and [5].

xxxv

Theorem 3.9. Let E be an elliptic curve over C and Λ be the corresponding

lattice. Then;

End(E) ∼= {α ∈ C | αΛ ⊂ Λ}.

By the above two theorems we have;

End(E) of an elliptic curve E is an order O of an imaginary quadratic number

field if and only if the lattice Λ is homothetic to an invertible fractional ideal i of

O.

⇒ ∃ bijective map between set of invertible fractional ideals of imaginary

quadratic orders and set of isomorphy classes of an elliptic curve.

⇒ particularly we have j(i) = j(E), where j(i) and j(E) are j-invariants of

imaginary quadratic order O and elliptic curve E, respectively.

Theorem 3.10. Let O be an order in an imaginary quadratic number field K, i

be an invertible fractional ideal of the order O. Then j(i) is an algebraic integer

of degree maximal h(O).

Proof: See [5].

Review: By previous chapter we have h(O) as the cardinality of the ideal

class group Cl(O).

Let now K be an imaginary quadratic number field with maximal imaginary

quadratic order OK . Then one can represent the ideal class group Cl(OK) of OK
with the represantatives;

i1, · · · , ihD

where represantatives are lattices over C. Hence j(i1), · · · , j(ihD
) will determine

the j-invariants.

Let L be the smallest Galois extension of K, in which each j(is), 0 ≤ s ≤ hD is

contained.

⇒ we have then an isomorphism C/is → Eis(C).

xxxvi

Let now E be an elliptic curve over C with End(E) ∼= OD and i1, · · · , iD are

elements of the ideal class group Cl(OD). Let further ε denote the elliptic curve

over L and be given as follows;

j0 = j(ik)

for some k ∈ {1, · · · , hD} with κ = j0/(1728− j0) and ε = (3κ, 2κ).

⇒ Lattices of E and ε are homothetic!

Theorem 3.11. Let K be an imaginary quadratic number field, OK be the ring

of algebraic integers in K. Then there exist exactly hD isomorphy classes elliptic

curves with complex multiplication (CM) with OK where D is the imaginary

quadratic discriminant of OK . Moreover, they can be defined over Hilbert Class

Field HK . Class polynomial of a Hilbert Class Field is

HD(X) =

hD∏
s=1

(X − j(is))

.

Proof and details: see reference [6], [5] and their references.

3.3 Elliptic curves over finite fields Fq

Definition 3.17. Let E be an elliptic curve over a finite field Fq. The qth-power

of Frobenius map is defined by

ϕ :

{
E(Fq)→ E(Fq)

(x,y) 7→(xq ,yq)
O7→O

It is also easy to see that ϕ maps points on E to points on E, i. e. it respects

the group law. In fact ϕ is a group endomorphism of E over Fq.

Corollary 3.1. 1. Let E be an elliptic curve over Fq. then we have

| E(Fq) |= q + 1− t

xxxvii

where t is the trace of Frobenius at q.

2. The Frobenius endomorphism ϕ and the trace of Frobenius satisfy the fol-

lowing functional equation

ϕ2 − [t]ϕ+ [q] = [0]

that is for a given point P = (x, y) on the curve (given in affine coordinates)

we have the following functional equality

(xq
2

, yq
2

)− [t](xq, yq) + [q](x, y) = O

.

Note: addition and substaction are curve operations!

Proof : see reference [6].

Theorem 3.12. Hasse Let p be a prime number and q = pn, n ∈ N. Let also

E be an elliptic curve over Fq. Then

|| E(Fq) | −(q + 1) |≤ 2
√
q

.

Proof : See [6].

Definition 3.18. Let E be an elliptic curve over Fp, where p is a prime number.

Let also | E(Fp) |= p+ 1. Then E is called supersingular.

Lemma 3.3.1. If E is a supersingular elliptic curve over Fp. Then End(E) is

the maximal order of a quarternion algebra.

As we already discussed we have just 2 choices for the endomorphism ring

of an elliptic curve over finite fields. (As it is the case for finite fields that

End(E) � Z)). The second case is the case of above lemma and the important

case is explained by means of the following theorem;

xxxviii

Theorem 3.13. Let E be an elliptic curve over Fp, where p is a prime number.

The endomorphism ring of E is an imaginary quadratic order if and only if

| E(Fp) |6= p+ 1.

Proof : see [6].

Remark 3.12. Let Υ ∈ OD be a prime ideal with O/Υ ∼= Fp. Furhermore,

ε = (α, β) is a non-supersingular elliptic curve over L and let E = (α mod Υ, β mod Υ)

be the reduced curve modulo Υ.

A curve ε has a ’good’ reduction modulo Υ if E is again a non-supersingular

elliptic curve. It means

j(ε) mod(Υ) = j(E).

Theorem 3.14. If j ∈ Fp, j 6= 0, 1728, then there exist maximal two isomorphy

classes of elliptic curves over Fp. If j = 0 (resp. j = 1728), then there exist

maximal 6 (resp. 4) isomorphy classes.

Proof : see also for details [6].

Theorem 3.15. Deuring Let OK be a maximal imaginary quadratic order.

Moreover, let ε be an elliptic curve over HD with End(ε) ∼= OK and let further p

be a prime ideal of degree 1 (i. e. p = p) and (P) = p.p for that P has a ’good’

reduction. Then, End(ε) ∼= End(E), i. e. End(E) = OK .

Proof : see [6] and [5].

⇒ ∃ some π ∈ OK with p = π.π, and then

| E(Fp |= p+ 1− (π + π)

.

3.4 Fast Point Addition and Multiplication

At this position, we will give some algorithms and methods to find a random

point on a given elliptic curve and discuss the efficient fast point addition and

xxxix

multiplication methods appeared in our computations later.

By Hasse’s theorem, we can conclude that for a given q we have a range of

4
√
q about the value q+1. In order try to find a random point for a given elliptic

curve over Fq, we can use the following algorithm due to [7] with almost uniform

distribution of elements of Fq.

ALGORITHM: Determining a random point in Fq

Input: An elliptic curve over Fq,

Output: A ’random’ point P ∈ Fq,

1. Do the the following;

(a) Pick a random x ∈ Fq;

(b) Substitute x for X in the Weierstrass form of the curve E;

(c) Try to find out Y ;

(d) If such y’s can be found, choose one and set P = (x, y).

2. Until such a point P is found

3. Return P .

For prime fields Fp, each orders occur with an almost uniform distribution for

details see reference [43].

3.4.1 Point Addition

We will concentrate our attention only on p > 3 not for caharacteristics 2 or 3,

as we do not need such characteristic in our furher discussions (for fields of char-

acteristic 2 of cryptographic interest, there are analogus methods as we describe

here for details see [7]). Our obeservations in point addtion and multiplication

are also based on the results from [7] and its references.

xl

Affine Coordinates

Review: As we already discussed for the fields characteristic is not equal to

2 or 3, for a given two points P1 = (x1, y1) and P2 = (x2, y2), given in affine

coordinates, such that P1, P2 6= O and P1 6= −P2 (these two conditions can be

trivially checked), we have P1 + P2 = P3 = (x3, y3) and this can be compute as

follows

1. If P1 6= P2,

(a) λ = y2−y1
x2−x1

,

(b) x3 = λ2 − x1 − x2,

(c) y3 = (x1 − x3).λ− x3 − y1.

2. If P1 = P2,

(a) λ =
3x2

1+a

2y1
,

(b) x3 = λ2 − 2x1,

(c) y3 = (x1 − x3).λ− x3 − y1.

• For P1 6= P2, we have one field inversion and three field multiplications,

which can be abbreviated by 1I + 3M.

• For P1 = P2, we have one field inversion and four field multiplications,

which can be abbreviated by 1I + 4M.

Remark 3.13. We can neglect in this case the cost of field addition and mul-

tiplication by small constants (for example in the computation of λ for the case

P1 = P2).

Projective Coordinates

As we already explained, too, a projective point P = (X, Y, Z) satisfies the

following Weierstrass equation

Y 2Z = X3 + aXZ2 + bZ3.

xli

If Z 6= 0, it corresponds to the affine point (X/Z, Y/Z). Hence, it turns out

that other projective representations can lead to more efficient implementations.

In particular, we will prefer ’weighted’ projective representation, i. e. (X, Y, Z)

will correspond to (X/Z2, Y/Z3) whenever Z 6= 0. It is equivalent then to using

projective curve of the form

Y 2 = X3 + aXZ4 + bZ6.

Then the zero point O = (γ2, γ3, 0) for some γ ∈ F∗q. One can easily see that con-

version from affine to projective is trivial, while conversion in the other direction

costs 1I + 4M.

The key observation in connection with weighted projective coordinates is

that point addition can be done using field multiplication only, with no inversions

required. The total costs is then 16M (for details see [7])

3.4.2 Fast Point Multiplication

Here point multiplication on the group of rational points of elliptic curves is the

special case of the problem of exponentiation of in general abelian groups (as

we use multiplication symbol for general setting of abelian groups). Therefore,

this problem corresponds to the related shortest addition chain for integers, i. e.

starting from 1, and computing at each step the sum of two previous result, what

is the least number of steps required to obtain k?

Certain characteristics of the elliptic curve version of the problem must also be

taken into account to obtain faster computational methods and hence algorithms,

although general methods of exponentiation can be used to solve point multipli-

cation problem.

We will not give details in the analysis of these algorithms that we will give

below. These can be found in [7] For the sake of correctness, when analyz-

ing the complexity of the section, and for simplicity we will consider the case the

xlii

field of char. 2 which can easily be extended for our case p > 3, where p is a prime.

ALGORITHM: Point Multiplication: Binary Method

Input: A point P and an l-bit integer k =
∑l−1

j=0 kj2
j,

Output: Q = [k].P ,

1. Q← O;

2. For j = l − 1; to 0 do;

(a) Q← [2]Q;

(b) if kj = 1 then Q← Q+ P ;

(c) j ← j − 1.

3. Return Q.

Our second method is m-ary method, where m = 2r for some r ≥ 1 and hence

binary method is the special case of this method corresponding to r = 1.

ALGORITHM: Point Multiplication: m-ary Method

Input: A point P and an integer k =
∑d−1

j=0 kjm
j, kj ∈ {0, 1, · · · ,m− 1}

Output: Q = [k].P ,

1. Precomputation

(a) P1 ← P ;

(b) For i = 2; to m− 1 do;

i. Pi ← Pi−1 + P (we have Pi = [i].P);

ii. i← i+ 1.

(c) Q← O;

2. Main Loop

(a) For j = d− 1; to 0 do;

i. Q← [m]Q (this requires r doublings.);

xliii

ii. Q← Q+ Pkj
;

iii. j ← j − 1.

(b) Return Q.

It can be easily verified that the algorithm computes [k].P , following the

Horner’s rule

[m](· · · [m]([m]([kl−1]P) + [kl−2]P) + · · ·) = [k]P.

The doubling in the main-loop can be exploited to obtain additional savings: by

splitting the computation of [m]Q into two different stages, one can skip also

the multiples of P in the precomputation. this leads to an improvement on the

m-ary method, this modified version of m-ary method will be our third algorithm.

ALGORITHM: Point Multiplication: m-ary Method

Input: A point P and an integer k =
∑d−1

j=0 kjm
j, kj ∈ {0, 1, · · · ,m− 1}

Output: Q = [k].P ,

1. Precomputation

(a) P1 ← P , P2 ← [2]P ;

(b) For i = 2; to (m− 2)/2 do;

i. P2i+1 ← P2i−1 + P2;

ii. i← i+ 1.

(c) Q← O;

2. Main Loop

(a) For j = d− 1; to 0 do;

i. If kj 6= 0 then do

A. Let sj, hj be such that kj = 2sjhj

B. Q← [2r−sj]Q (this requires r doublings.);

C. Q← Q+ Phj
;

xliv

D. j ← j − 1.

ii. Else sj ← r

A. Q← [2sj]Q;

B. j ← j − 1.

(b) Return Q.

Note that a slightly modified version of horner’s method proves the correct-

ness of this algorithm, too. At this stage we will once more generalize the method

and give the so-called Sliding Window Method.

ALGORITHM: Point Multiplication: Sliding Window Method

Input: A point P and an integer k =
∑l−1

j=0 kj2
j, kj ∈ {0, 1}

Output: Q = [k].P ,

1. Precomputation

(a) P1 ← P , P2 ← [2]P ;

(b) For i = 1; to 2r−1 − 1 do;

i. P2i+1 ← P2i−1 + P2;

ii. i← i+ 1.

(c) j ← l − 1, Q← O;

2. Main Loop

(a) While j ≥ 0 do

i. If kj = 0 then

A. Q← [2]Q,

B. j ← j − 1.

ii. Else do:

A. Let t be the least integer such that j − t+ 1 ≤ r and kt = 1

B. hj ← (kjkj − 1 · · · kt)2,

C. Q← [2j−t+1]Q+ Phj
,

xlv

D. j ← t− 1.

(b) Return Q.

It is time now to mention the so-called Signed Digit representations, it is the

case that the subtraction in the group of rational pints of elliptic curves has vir-

tually the same cost as addition. For canonical curve representations the negative

of a point P = (x, y) is (x, x+ y) in characteristic two, and (x,−y) in odd char-

acteristic. This leads us to reduce the number of curve operations by means of

addtion-subtraction chains in point multiplication method.

Consider now integer representations of the form k =
∑l

j=0 sj2
j, where sj ∈

{−1, 0, 1}. It is said to be then binary signed digit, abbreviated by SD, repre-

sentation. This representation includes all integers 0 ≤ k ≤ 2l+1 − 1 along with

their negatives. This redundancy can be traded off for a sparsity constraint which

results more efficient point multiplication algorithms.

Definition 3.19. An SD representation is said to be sparse, if it has no adjacent

non-zero digits, that is Sjsj+1 = 0 ∀ j ≥ 0. A sparse SD representation is also

called a non-adjacent form, denoted by NAF.

Lemma 3.4.1. Every integer k has a unique NAF. The NAF has the lowest

weight among all SD representations of k, and it is at most one digit longer than

the shortest SD representations of k.

Proof : See references also for more details [39], [38] Chapter 10, [37].

Our next algorithm computes the NAF of a non-negative integer given in bi-

nary representation.

ALGORITHM: Conversion to NAF

Input: An l-bit integer k =
∑l−1

j=0 kj2
j, kj ∈ {0, 1}

Output: k =
∑l

j=0 sj2
j, sj ∈ {−1, 0, 1}

1. c0 ← 0;

2. For j = 0; to l do;

xlvi

(a) cj+1 ← b(kj + kj+1 + cj)/2c (assuming that ki = 0 for i ≥ l);

(b) sj ← kj + cj − 2cj+1;

(c) j ← j + 1.

3. Return (slsl−1 · · · s0).

It is by Morain and Olivos showed that NAFs have fewer zeros than binary

representations, i.e. they proved that in expected weight of a NAF of length l is

l/3. For details see [36].

Now we will give a slightly generalized algorithm sliding window method,

namely Signed m-ary Window Decomposition.

ALGORITHM: Signed m-ary Window Decomposition

Input: An l-bit integer k =
∑l−1

j=0 kj2
j, kj ∈ {0, 1}, kl = 0

Output: A sequence of pairs {(bi, ei)}d−1
i=0

1. d← 0, j ← 0;

2. While j ≤ l do;

(a) If kj = 0

i. j ← j + 1

(b) Else do

i. t← min{l, j + r − 1}, hd ← (ktkt−1 · · · kj)2.

ii. If hd > 2r−1 then do:

A. bd ← hd − 2r,

B. increment the number (klkl−1 · · · kt+1)2 by 1.

iii. Else

A. bd ← hd,

B. ed ← j, d← d+ 1, j ← t+ 1

3. Return the sequence (b0, e0), (b1, e1), · · · , (bd−1, ed−1)

xlvii

Proof of the correctness of algorithm: The correctness of the algorithm

is verified inductively by ascerting the the condition

k =
d−1∑
i=0

bi2
ei +

l∑
j′=j

kj′2
j′

each time the loop in Step 2 is checked. As j > l, the second sum of the

above equation vanishes, giving the desired decomposition of k, then the proof

is straightforward. The only observation here is that the condition in step b.ii

holds, then b.ii.A substracts 2j+r from the sum in equation and b.ii.B adds it

back as we have t = j + r − 1.

Now after having the sequence of {(bi, ei)}d−1
i=0 , the modification of the sliding

window method is easy to construct.

ALGORITHM: Signed m-ary Windows

Input: A point P , and such that k =
∑d−1

i=0 bi2
ei

Output: Q = [k]P .

• Precomputation

1. P1 ← P , P2 ← [2]P

2. For i = 1 to 2r−2 − 1 do

(a) P2i+1 ← P2i−1 + p2,

(b) i← i+ 1

3. Q← Pbd−1
.

• Main Loop

1. For i = d− 2 to 0

(a) Q← [2ei+1−ei]Q,

(b) If bi > 0 then Q← Q+ Pbi ,

(c) Else Q← Q− P−bi ,

xlviii

(d) i← i− 1.

2. Q← [2e0]Q,

3. Return Q

Using the analysis analog to that of unsigned window scheme, one can derive

the correctness of the algorithm for details see [7].

3.5 Point Counting and Other Problems

Remark 3.14. There are also other concepts of elliptic curves coming together

with primality proving algorithms and public key cryptography, some of these are

followings

• Determining the Group Order, point counting algorithm, of rational points

of elliptic curves over finite fields. For these there are lots of approaches,

– Baby Step-Giant Step Schoof’s Algorithms, ant its variants e. g.

due to Etkies’ and Atkin’s based on the variation of Hasse’s theorem.

– Counting the points by means of constructing non-supersingular ellip-

tic curves with complex multiplication.

• Discrete Logarithm for elliptic curves, abbreviated by ECDLP, which gives

a change to obtain analogus cryptographic protocols like ElGamal and

Diffie-Hellmann. Note that according to Pohling-Hellmann approach solv-

ing DLP modulo n, where n is order of an abelian group G,
n = pe11 .p

e2
2 · · ·P er

r is equivalent to solving each DLP modulo pi, where pi’s

are prime for 1 ≤ i ≤ r.

Note: We will introduce the concepts of Point Counting Problem in details

in Chapter 5 & 6. Because of the fact that primality proving algorithms of Gold-

wasser & Killian and Atkin’s are principally based on the Point Counting Problem

and hence Schoof’s approach (or its variants) and CM-method, respectively.

xlix

We will also see computationally efficient methods of the above concept in

a detail and try to get efficient methods in particular for curves with complex

multiplication. Furthermore, we will also see how the results coming from the

arithmetic of elliptic curves over C or Q and the results of Algebraic Number

Theory that we developed in the former chapter will be applied in our primality

testing and proving algorithms.

For more general treatment of the theory of arithmetic of elliptic curves and

their usage in extensive areas of both applied and theoretical mathematics can

be found in [6] and [5]. Furthermore, for the usage of elliptic curves particularly

in Cryptography, Coding theory and Factorization of integers see [1] and [38].

l

chapter 4

Primality Testing and Proving

Algorithms

In this chapter, we are going to introduce and explain different primality testing &

proving algorithms. We will start with a historical prime listing method, namely

sieve of Eratoshenes, which will give us a possibility up to a given bound, say it

up to 1016, to store prime numbers and therefore enables us to verify whether a

given prime candidate N , N < 1032, is prime by means of just checking whether

it is divisible by any of the list element.

Question

• What is a Primality Test / Primality Proof ?

• What is the meaning of certificate in our context?

Definition 4.1. 1. If our algorithm gives us a possibility to reprove the pri-

mality of the candidate mathematically then we say that our algorithm is

a Primality Proving algorithm.

2. If with our algorithm it is not possible to recheck mathematically that our

candidate is prime, then we say that our algorithm is a Primality Testing

algorithm. In that case we have also two possibilities;

(a) An algorithm is said to be a True Primality Testing, if it can determine

with mathematical certainty that our candidate is prime.

(b) An algorithm is said to be a Probabilistic Primality Testing, if our

candidate is a probable prime.

li

3. If it is possible to reprove the primality of our prime candidate, then we say

that it has a (primality) certificate.

4.1 Prime Number Generation

In this section, we will explain a very historical primality listing methods. For

generalization and modern methods see [2].

ALGORITHM: Sieve of Eratosthenes

Input: A natural number B, B > 2, and the set L = {2}
Output: Prime numbers between [2, B],

1. List the numbers n ∈ [2, B], for example ai = i, 2 ≤ i ≤ B and initialise

p = 2;

2. While p < B do:

(a) Start with p and delete all n’s of the form k.p with k ≥ 2;

(b) Find the smallest non-deleted number p′ with p′ > p, then L = L∪{p′};

(c) p← p′ and goto b;

3. Return L.

Remark 4.1. One can improve the efficiency in the followings

• Considering just i ∈ [2, B], or better the numbers coprime to 210 = 2.3.5.7.

• One can also generalize the sieve to the intervals [A,B], such as [A,A+106].

4.2 Trial-division Method

The easiest way to test whether a number is prime or not is the so-called trial

division. If a given number N ∈ N is not divisible by any of the primes ≤
√
N ,

then we can conclude that N is prime. (As if N = a.b, 1 < a ≤ b < N ⇒
a2 ≤ a.b = N ⇒ p2 ≤ N for primes p | a) Of course, since the complexity is

lii

O(
√
N), it is not possible for big numbers to use this method (say it more than

100-digits).But one can use trial-division to factor an integer to test whether we

have small factors or not. Therefore, ideally it can also be used at the first up

to a given bound in before terminating our more advanced algorithms later. One

can choose a bound B and by means of sieve of Eratosthenes store the primes in

a list to see at the first if our prime candidate is divisible by any element of this

list. Of course if it is the case, we can conclude that our candidate is composite

and divisible by that element of our previously chosen list.

4.3 Fermat’s Primality Test

According to the Fermat’s last theorem, one can consider that whether we have

somehow an inverse of Fermat so that we can apply a Primality Testing based on

this inverse. But unfortunately such an inverse does not exist. But we can have

a compositeness Test owing to the following Corollary of Fermat.

Proposition 4.1. A number N is composite if there exists a ∈ N such that

aN−1 6≡ 1 mod(N).

Proof : trivial by Fermat’s theorem.

Definition 4.2. The composite number N which passes Fermat’s test is called

Carmichael Number. The smallest such a number is 561 = 3.11.17

Theorem 4.1. There are infinitely many Carmichael Numbers.

By above theorem it is clear that Fermat test can not guarentee at all whether

the checked candidate is a true prime. However this test enables us to detect most

of the composite numbers at the first. Furthermore, by means of generalization

of Fermat’s and trying to get a generalized version of inverse of Fermat’s theorem

will give us a change to introduce the N − 1, N + 1, and hence at the end

Jacobi-sum and ECPP algorithms. There are also other probabilistic primality

tests by means of generalizing Fermat. In the next section we will deal with such

algorithms. They are also used with some modification in cryptographic protocols

liii

when the true primality testing and proving algorithms are not available or not

required to guarantee a reasonable security of the considered cryptosystem.

4.4 Probabilistic Primality Testing Algorithms

Now it is time to give the probabilistic primality tests, namely Solovay-Strassen

and Miller-Rabin Tests. The idea is to use the definitions of pseudoprimality,

euler pseudoprimality and at the end strong pseudoprimality.

4.4.1 Solovay-Strassen Probabilistic Primality Test

Now Solovay-Strassen Algorithm will be given. This and Miller-Rabin Algorithms

are actually probabilistic algorithms. The answer composite is always true ,

hence they are called in some texts Compositeness Algorithms. Moreover, if the

candidate is prime then the answer is always ’prime’. However, it is possible to

have a false answer ’prime’, though the candidate may actually be ’composite’.

ALGORITHM:Solovey-Strassen

1. N ∈ N, N is odd;

2. choose a number t ∈ N randomly and for 1 ≤ i ≤ t choose ai randomly;

3. For 1 ≤ i ≤ t compute

(a) ci ≡
(
ai

n

)
mod(N) with reciprocity law

(b) bi ≡ a
N−1

2
i mod(N);

4. if bi 6= ai for some i,then Return: ’composite’ ;

5. else Return: ’possibly prime’;

Proposition 4.2. Solovay-Strassen error-probability bound Let N be an

odd composite integer. The probability that the Solovay-Strassen test declares

N to be ’prime’ is less than (1
2
)t.

liv

4.4.2 Miller-Rabin Probabilistic Primality Test

We just generalize the above idea of Sollovay-Strassen by considering strong pseu-

doprimes instead of Euler pseudoprimes (because spsp < epsp < psp). We there-

fore introduce the Miller-Rabin Test, which is also called strong pseudoprimality

test.

ALGORITHM:Miller-Rabin

1. N ∈ N, N is odd, set N = 1 + 2l.m, where m is odd;

2. choose a number t ∈ N randomly and for 1 ≤ i ≤ t choose ai randomly;

3. Test for 1 ≤ i ≤ t

(i)whether ami ≡ 1 mod(N)

(ii)or there exists j with 0 ≤ j ≤ l such that a2j .m ≡ −1 mod(N);

4. if both (i) & (ii) are false, Return:’composite’;

5. else Return: ’possibly prime’;

Proposition 4.3. Miller-Rabin error-probability bound Let N be an odd

composite integer. The probability that the Miller-Rabin test declares N to be

’prime’ is less than (1
4
)t.

Remark 4.2. fixed bases in Miller-Rabin a strategy that is sometimes em-

ployed is to fix the bases a in the Miller-Rabin algorithm to be the first few primes

(composite integers may be ignored using iteratively the Miller-Rabin), instead

of choosing them at random. Note that trial division and the so-called prime list

may be used at the first to reduce the unnecessary computation in Miller-Rabin

algorithm, i. e. choose a bound B and list all primes p < B and use at the first

trial division to guarantee that the given candidate is not divisible by any of these

primes < B. For instance, if one chooses B = 256, then %80 of composite odd

numbers can be discarded before employing Miller-Rabin.

Remark 4.3. Let’s compare Sollovay-Strassen & Miller-Rabin algorithms ac-

cording to [2]:

lv

1. The Soolovay-Strassen test is computationally more expensive.

2. The Sollovay-Strassen test is harder to implement as it also involves Jacobi

symbol computations.

3. The error probability for Sollovay-Strassen is bounded by (1
2
)t, while the

error probability for Miller-Rabin is bounded by (1
4
)t.

Therefore we can conclude that there is no need to use Sollovay-Strassen

instead of Miller-Rabin.

4.5 N − 1 Primality Testing Algorithms

There are also some primality testing algorithms based on the inverse of the Fer-

mat’s theorem. Indeed, our aim here is to get an inverse of Fermat by using some

additional informations. Actually if we can factor the number N−1 completely or

partially one can give a proof of primality with some extra informations. We will

now give the most important proposition of both N − 1 (resp. N + 1) primality

testing algorithm and our ECPP Algorithms.

Theorem 4.2. Lucas Let a,N ∈ N with gcd(a,N) = 1. If aN−1 ≡ 1 mod(N),

but a
N−1

d 6≡ 1 mod(N) for every divisor d > 1 of N − 1, then N is prime.

Proofsee [17].

Theorem 4.3. Let N ∈ N, N − 1 =
∏t

i=1 p
ei
i . If there exists a ∈ N with

aN−1 ≡ 1 mod(N) but a
N−1

pi 6≡ 1 mod(N), then N is prime.

Proofsee [17].

Theorem 4.4. Let N ∈ N, 2 | N , and N − 1 =
∏t

i=1 p
ei
i for 1 ≤ i ≤ t. If there

exists ai with aN−1
i ≡ 1 mod(N), a

N−1
i

i 6≡ 1 mod(N), then N is prime.

Proof see [17].

Note that in order to apply any of the above theorem, we need the complete

factorization of N − 1. Mostly, it is not possible to have such complete factoriza-

tion, but we have one of the divisor of N − 1 which satisfies some properties then

lvi

we can also test the primality of the candidate N .

Pocklingston’s theorem will be the center of such partial factorization of N−1,

as we will see, we can get also depending on this theorem other testing criterias.

Proposition 4.4. Pocklington’s Theorem Let p be a prime divisor N-1. As-

sume that we can find an integer ap such that aN−1
p ≡ 1 mod(N)and (aN−1

p −
1, N) = 1. Then if d is any divisor of N, we have d ≡ 1 mod(pαp), where pαp is

the largest power of p which divides N-1.

proof: It is enough to look at all prime divisors of N.Now if p is a prime

divisor of N, we have ad−1
p ≡ 1 mod(d), since ap is coprime to N hence to d. On

the other hand , we have a
N−1

p
p 6≡ 1 mod(d), as (aN−1

p −1, N) = 1. If e is the exact

order of ap modulo d, then we have e divides d-1 but not (N−1)
p

but e divides N-1.

hence pap | e | d− 1, hence d ≡ 1 mod(pap).

Proposition 4.5. Assume that we can write N−1 = F.U where (F,U) = 1, F is

completely factored and F >
√
N . Then, if for each prime dividing N we can find

an ap satisfying the conditons of Pocklington, then N is prime. Conversely, if N

is prime , for any prime p dividing N-1, one can find ap satisfying the conditions

of Pocklington.

Corollary 4.1. Assume that we can write N − 1 = F.U where (F,U) = 1,

F is completely factored, all the prime divisors of U are greater then B, and

B.F ≥
√
N . Then, for each p dividing F we can find an ap satisfying conditions

of Pocklington, and if furthermore we can find an aU cuch that aN−1
U ≡ 1 mod(N)

and (aFU − 1, N) = 1, then N is prime. Conversely, if N is prime, then ap and aU

can be always found.

4.5.1 Test

Now we will give N − 1 algorithm by means of a pseudocode. At the first we will

give an algorithm for the case that we can have the full factorization of N − 1,

in the second case we concentrate our attention on partially factorized case.

lvii

ALGORITHM:N − 1 Test (Fully factorized N − 1)

Input: N ∈ N, N is odd, the bases ai, 0 ≤ i ≤ r, which passed Miller-Rabbin

test,

Output: ’prime’, or ’composite’.

1. Set i = 0 (m0 first base);

2. Determine s, t such that N − 1 = m2s

i t;

3. While i < k do:

(a) if mt
i ≡ 1 mod(N), then i← i+ 1,

(b) while k < s do:

• If m2k

i t ≡ −1 mod(N), i← i+ 1 and STOP,

• k ← k + 1,

(c) If k = s return ’composite’.

4. Return ’prime’.

Now if we cannot factorize the N − 1 fully we will just test the conditions of

Pocklington in the following algorithm:

ALGORITHM:N − 1 Test (Partially factorized N − 1)

Input: N ∈ N, N is odd, P is a prime divisor of N − 1, and Q =
∏n

i=0 p
qi
i is a

divisor of N − 1 with prime factors pi’s such that N − 1 = Q.P with Q < P .

Output: ’prime’, or ’composite’.

1. Choose an natural number a ∈ N such that 1 < a < N ,

2. If aN−1 6≡ 1 mod(N), then GOTO 1,

3. If gcd(aQ − 1, N) 6= 1, then GOTO 1,

4. Return ’prime’.

lviii

4.5.2 certificate

The so-called DOWN-RUN method to get the pairs (i,mi), together with expo-

nents we get the so-called certificate. In fact if we store these datas, for a second

programmer it is possible to verify the primality or compositeness of the result

once more.

4.5.3 Special primes

Easiest form is N − 1 = 2m

Let n ∈ N be an odd integer. We know that

xn − 1

x− 1
= 1 + x+ · · ·+ xn−1

Let us substitute x with −x, then we have
(−x)n−1
−x−1

= 1− x+ · · ·+ (−x)n−1 ⇒ xn+1
x+1

= 1− x+ · · ·+ xn−1 ⇒ x+ 1 | xn + 1, if

we have n ≡ 1 mod2.

Let m = bu, where u is odd, then x := 2b ⇒ 2b + 1 | 2bu + 1 = N . According

to lemma 2.2.3 we have then together with theorem 3.3 that if a ∈ Z with

aFn−1 ≡ 1 mod(Fn), and a(Fn−1)/2 6≡ 1 mod(Fn), then we can conclude that Fn is

prime, where Fn = 22n
+ 1.

Theorem 4.5. Peppin Let n ≥ 1. Then Fn is prime if and only if

322n−1 ≡ −1 mod(Fn).

Theorem 4.6. Let n ≥ 2 and p | Fn, p is prime. Then we have p ≡ −1 mod(2n+2).

Note: Proofs of the above two theorem see [17].

With the help of the Poclington’s theorem we can conclude also the following

results

Theorem 4.7. Let N = K.2n + 1, 2 - K, 0 < K < 2n + 2. Then N is prime if

and only if ∃ a ∈ Z with a
N−1

2 ≡ −1 mod(N).

lix

Theorem 4.8. Let N = K.2n + 1, n ≥ 2, K is odd and 3 - K. Furthermore,

assume that we have 0 < K < 2n + 2. Then N is prime if and only if

3
N−1

2 ≡ −1 mod(N).

4.6 N + 1 Primality Testing Algorithms

Our aim is now to find a similar Test for N + 1, when the factorization of N − 1

is not partially or fully possible.

Remark 4.4. Let p, q be two integers, so that p2 − 4.q is not a square, then

x2 + px+ q have two distinct zeros r1,2 = p
2
±
√

p2

4
− q. If we consider r1 we get

the following recursive formula ;

Proposition 4.6. Powers of r can be given in the following way

rm1 =
V (m) + U(m).

√
p2 − 4q

2

where V (m) and U(m) can be calculated recursively as follows :

U(0) = 0, U(1) = 1, U(m) = pU(m− 1) + qU(m− 2),

V (0) = 2, V (1) = p, U(m) = pV (m− 1)− qV (m− 2),

U and V are lucas sequences of p and q.

Proof : see see [17].

Proposition 4.7. (Lucas Test) Let N be an odd integer. If there exists δ with

(δ
N

) = −1 and for every prime factor r of N+1 there exist some p and q with

p2 − 4q = δ such that

U(N + 1) ≡ 0 mod(N) & U(
n+ 1

r
) 6≡ 0 mod(N)

are satisfied, then N is prime.

Proof : see [17].

lx

4.6.1 Test

Now we will give N − 1 algorithm by means of a pseudocode (only for partially

factorized case).

ALGORITHM:N + 1 Test (Partially factorized N + 1)

Input: N ∈ N, N is odd, P is a prime divisor of N + 1, and Q =
∏n

i=0 p
qi
i is a

divisor of N + 1 with prime factors pi’s such that N + 1 = Q.P with Q < P .

Output: ’prime’, or ’composite’.

1. Choose r, s such that gcd(r, s) = 1,

2. If (r−4s
N

) 6= −1, then GOTO 1,

3. If V (N+1
2

) 6≡ 0 mod(N), then GOTO 1,

4. If V (Q
2
) 6≡ 0 mod(N), then GOTO 1,

5. Return ’prime’.

4.6.2 certificate

As in the case of N − 1, we can get a certificate for N + 1 tests in terms of the

parameters r, s. As we know that here r depends on the number s, we can choose

also r = 1 if s is even, and r = 2 if s is an odd integer.

4.6.3 Special primes

We know by Corollary 2.2 that if N = 2n−1 is prime, then n must also be prime.

Recall that we say such primes Mersenne Primes. One can use the so-called N+1

tests much more efficiently.

4.7 ECPP Algorithms

As we have already seen from the above two sections, if we have the partial

factorization of N − 1 or N + 1, there is a version of inverse of Fermat’s little

lxi

theorem. With some additional requirements it is not actually a difficult problem

to be able to test the primality of a given number. It is also clear that these

algorithms are somewhat special, as they need the factorization of N − 1 resp.

N + 1. The first general purpose primality proving algorithm was introduced

in 1979 by Addleman, Pomerence and Rumely. This algorithm is called Jacobi

Sum Test and based on the group rings of cyclotomic extensions. The idea of this

test is therefore also to do with a generalization of Fermat’s little theorem. The

running time of this algorithm is O((logN)c.log log logN) for some constant c > 0.

Hence, it is almost a polynomial time algorithm. However the algorithm was not

practical. Cohen and Lenstra developed a practical version of this algorithm and

is of use also in practice.

The reason why ECPP Algorithms are superior in practice is that it gives

a short primality certificate (or certificate of primality), that is once given the

parameters of the algorithm it is much more easy for the second party to verify

the result (in our case prove or disprove the primality of the number which was

considered to be prime). Jacobi Sum test cannot give such a certificate, that is

second programmer has to write and execute the entire test once more, though

it is slightly faster than our ECPP Algorithms up to 600-700 digits.

4.7.1 Test

Here we will explain the algorithm based on elliptic curves over finite fields, in-

stead of using the suitably strong generalizations of Fermat’s theorem, we will

use the group of rational points of elliptic curves over FN itself. Now at the first

step we will morally certain that our number N is prime, i. e. it has passed the

probabilistic primality proving tests such as Sollavay-Strassen and Miller-Rabin.

Hence we will work as if N was a prime, assuming for example that each non-zero

element modulo N is invertible. In the event that there exist some non-invertible

elements modulo N , we will immediately stop the algorithm and give a non-

trivial factor of N by taking a GCD with N (for example by using extended

GCD Algorithm). We will therefore consider an elliptic curve over Z/NZ. It

lxii

means that we consider a Weierstrass equation y2 = x3 + ax + b a, b ∈ Z/NZ,

(4a3 +27b2) ∈ (Z/NZ)∗ (it is not necessary to consider general Weierstrass equa-

tion as (N, 6) = 1). Furthermore, we will perform the group operation of rational

points of our elliptic curve as if N was a prime. Hence, we can assume from now

on that all computations can be performed without any problems.

Our basic strategy in our ECPP Algorithm is the so-called DOWN-RUN strat-

egy of the following theorem, which is the elliptic curve analog of the theorems

of N − 1 and N + 1 tests.

Theorem 4.9. Let N be a positive integer coprime to 6 and different from 1.

Let E be an elliptic curve modulo N . Assume that we know an integer m and a

point P ∈ E(Z/NZ) satisfying the following conditions.

1. There exists a prime divisor q of m such that

q > (
4
√
N + 1)2

2. m.P = OE = (0 : 1 : 0)

3. (m
q
).P = (x : y : t) with t ∈ (Z/NZ)∗

Then N is prime.

proof : Assume that N was not a prime Let p be the smallest prime divisor of

N in E(Z/pZ),the image of P has order a divisor of m but not divisor of m/q as

t ∈ (Z/pZ)∗. Since q is a prime q divides the order of the image of P in E(Z/pZ),

i.e. q ≤| E(Z/pZ) |. By Hasse’s Thm. q < (
√
p + 1)2. Since p ≤

√
N (as being

the smallest prime by assumption) we get q < (4
√
N + 1)2 which is trivially a

contradiction to our assumption.

Now we are facing with 3 main problems to solve here namely,

• How to choose the elliptic curve?

• How to find P?

lxiii

• How to choose m ∈ N?

Now the following proposition gives the answer of the second and third question.

Proposition 4.8. Let m =| E(Z/pZ) |. If for a prime number q dividing m

q > (
4
√
N + 1)2

is satisfied then there exists a point P ∈ E(Z/NZ) s.t. m.P = OE = (0 : 1 : 0)

and (m
q
).P = (x : y : t) with t ∈ (Z/NZ)∗. Note that m =| E(Z/pZ) | can be

computed as if N was a prime.

The ECPP (elliptic curve primality proving) algorithms is given then as fol-

lows;

ALGORITHM:ECPP

INPUT: a number N ∈ Z, whose primality will be (dis)proved.

OUTPUT: If N is composite , a divisor of N , if N is prime return ’prime’.

1. choose a non-supersingular elliptic curve E over Z/NZ

2. m←| E |;

3. choose a prime number q > (4
√
N + 1)2 such that q | m;

4. Choose a ’random’ point P ∈ E;

4.1 If m.P 6= 0 go to 4;

4.2 If m
q
.P = 0 go to 4;

4.3 if there exists an error return the divisor ofN (extended GCD algorithm)

5. return ’prime’.

As we see in this algorithm, we reached an algorithm analog to the one that

we developed in N − 1 and N + 1 tests. As we already explained these tests are

special since they need the partial or full factorization of N−1 or N+1. However,

if we change the group FN with the group of elliptic curves over FN , we can reach

a general primality proving algorithm, which also, in contrast to Jacobi sum test

lxiv

and its variants, gives us a chance to reprove or disprove the result that we have

tested. For further discussions on short prime certificates see the next chapter.

Further, the idea is unchanged, namely the so-called DOWN-RUN strategy. We

get intermediate prime candidates, and applying the DOWN-RUN strategy, we

get the following;

Remark 4.5. The primality of a number N can be reduced to the primality of

the smaller prime candidates q < N by means of the above ECPP Algorithm.

Moreover, applying this algorithm recursively, we can prove the primality of the

given prime candidate N just by trial-division or N − 1 test, as we can get an

intermediate prime candidate q < 1016.

After introducing our algorithm, we have to deal with the following problems,

which are actually coming together with the results of the theory of arithmetic of

elliptic curves over C or FN in Chapter 3, and the results from Number Theory

and Algebraic Number Theory in Chapter 2.

• How can we choose elliptic curves?

• How can one compute the cardinality of the group of rational points of

elliptic curves over finite fields, whose characteristic is ’big’?

• Is this algorithm practical?

Our basic difficulty in our algorithm is to find m =| E(Z/pZ) |. We will discuss

in detail the methods (both theoretic and practical) in the next chapter. After

that we will give the complexity analysis of the Algorithm in chapter 6 and in

chapter 7 we will give the implementation details.

As we already see, we need in this case also an elliptic curve E over ZN with

the property that it has a prime divisor, which satisfies the condition > (4
√
N+1)2.

Furthermore, we need also a point P on this curve which satisfies the conditions

of the Theorem 4.9. That means we have a probabilistic algorithm, although the

result is always true and reprovable. Note that in case N is not a prime, it is

lxv

not possible to terminate the algorithm, but if we insert the condition of GCD

with the intermediate result, we will get a divisor of N and which also gives us a

chance to detect the divisor of N , for the case N is composite.

4.7.2 certificate

As we already witnessed inN−1 andN+1 tests, we can apply in ECPP algorithm

also the so-called DOWN-RUN strategy here we get recursively the intermediate

prime candidates:

N0 = N,N1(= q), · · · , Ni, · · ·

Definition 4.3. N0 = N(= q0), N1(= q1), · · · , Ni(= qi), · · · with corresponding

elliptic curves Ei and the cardinalities mi, are called primality certificate by

means of ECPP.

In contrast to the Jacobi sum test, we can get with these certificate candidates

a certificate algorithm, which verifies the result in a much more little time than

original algorithm.

Remark 4.6. As we already explained this, algorithm gives a short certificate

by means of mi’s . It gives a possibility that anybody can prove to his or her

satisfaction the primality of N using much less work than executing the original

Algorithm.

4.8 Primality Testing in reality

We can of course combine all of the algorithms discussed in this chapter so as

to obtain a true primality testing method, which may be used in cryptographic

protocols such as Diffie-Helmann and ElGammal.

lxvi

ALGORITHM:A Combined Primality Testing

INPUT: a number N ∈ Z, whose primality will be (dis)proved,

OUTPUT: If N is composite , a divisor of N , if N is prime return ’prime’.

1. Test, ifN is coprime to 30. If not return {’N’ has a divisor gcd(N, 30)};

2. Test, if N is divisible by any elements p of prime list up to < 1016 (trial

division) if yes return {’N’ has a divisor p};

3. Test, whether 2N−1 ≡ 1 mod(N) (almost all composite number can be

therefore detected), if not return {’N’ has a divisor p};

4. FactoriseN−1 and terminateN−1 algorithm, if we have answer ’composite’

return {’N’ has a divisor p};

5. FactoriseN+1 and terminateN+1 algorithm, if we have answer ’composite’

return {’N’ has a divisor p};

6. Terminate Miller-Rabbin Algorithm with a given bound (parameter), if we

have answer ’composite’ return {’N’ has a divisor p};

7. terminate ECPP algorithm, if we have answer ’composite’ return {’N’

has a divisor p};

8. return {’prime’}.

Note that one can also use in step 7 Jacobi sum test, if there is no need to

certify the primality of the number. The algorithms of Jacobi sum and ECPP have

been also combined methods based on the concept of ’dual elliptic primes’ (see

[28]).

lxvii

chapter 5

ECPP (Elliptic Curve

Primality Proving)

ALGORITHMS

We have basically explained the theory of primality testing algorithms and ECPP

algorithms in the last chapter. Our basic problem now is to determine, as we dis-

cussed, the order of the group of rational points of elliptic curves over finite

fields. One method is due to Schoof. His algorithm is a Baby Step-Giant Step

algorithm based on the theorem of Hasse, which computes m =| E(Z/pZ) | in

time O(log8N). The ECPP Algorithm, which uses the Schoof’s algorithm so as to

find m =| E(Z/pZ) |, is due to Goldwasser and Kilian. It was showed that under

reasonable hypothesis on the distribution of prime numbers in short intervals, the

expected running time of the algorithm isO(log12N), hence is polynomial in logN .

The theoretical advance has been made by Adleman and Huang, by proving

the following theorem.

Theorem 5.1. There exists a probabilistic polynomial time algorithm which can

prove or disprove that a given number N is prime.

Their idea is to use, in addition to elliptic curves, Jacobians of curves of genus

2, and a similar algorithm to the one like Goldwasser and Kilian. Although, their

algorithm is not practical, they proved the above theorem, see [25], i. e. they

found an algorithm which runs in polynomial time. Of course both Goldwasser

and Kilian and Jacobi Sum tests are not of that type since only the expected

running times are polynomial, but the worst case may not be!

lxviii

5.1 Goldwasser-Kilian ECPP Algorithm

Goldwasser & Killian used the same idea of the ECPP-Algorithm that we ex-

plained in last chapter. They use the so-called Schoof Algorithms to find the

cardinality of the group of E(FN).

5.1.1 Schoof’s Algorithms

Problem: To find | E |. For every point P ∈ E(Fq) with n = ord(P) we have a

k ∈ N such that k.n =| E |.
⇒ By Hasse’s theorem k.n ∈ [q + 1− 2

√
q, q + 1 + 2

√
q] =: I.

Observation: If ord(P) > 4
√
q, then there exists exactly one k ∈ N such

that k.n ∈ I (and hence k.n =| E |).

Baby-Step Giant-Step Algorithm

Idea:

• Choose a ’random’ point P ∈ E(Fq) and verify that (in apprx.
√
q steps)

ord(P) > 4
√
q.

• Determine the unique number k.n ∈ I with k.n.P = O (and hence | E |).

ALGORITHM:A Baby-Step Giant-Step

1. Initial Step;

• Set h := 2
√
q, hence | E |∈ [q + 1− h, q + 1 + h],

• Define t′ := trace(φ)−h. Then | E |= q+1− trace(φ) = q+1−h− t′

with t′ ∈ [0, 2h],

• Set m := d
√

2he = d2 4
√
qe ⇒ ∃a, b ∈ {0, 1, · · · ,m − 1} such that

t′ = am+ b.

2. Baby-Step

lxix

(a) For b < m:

i. compute b.P and store in a list,

ii. b← b+ 1.

3. Giant-Step

(a) For b < m:

i. Compute (q + 1 + h− am).P,

ii. Compare, if (q+ 1 +h− am).P = b.P . If so return {t′ = am+ b},

iii. b← b+ 1.

4. Return {q + 1− t′ + h}.

By the construction we have am+ b = t′ ∈ [0, 2h] ⇒ trace(φ) = t′ − h⇒
| E |= q + 1 − trace(φ) = q + 1 − t′ + h, which proves hence the correctness of

the above algorithm.

Schoof’s Algorithm

In this case we will try to find the trace t = trace(φ), where φ the Frobenious.

As we know from the functional equation | E(Fq) |= q + 1− t.

Idea: Compute at the first t modulo p for all p prime.

Chinese Remainder Theorem: throughout the equations t mod(pi) for i =

1, · · · , k, we can determine t mod(p1 · · · pk) uniquely.

We know that t ∈ [−2
√
q, 2
√
q] (by Hasse) so that t is uniquely determined

by tmod(pi) for i = 1, . . . , k if p1 · · · pk > 4
√
q. It is meaningfull to start with

p1, p2, p3, · · · = 2, 3, 5, · · ·

ALGORITHM: Schoof’s Algorithm

lxx

1.Step: Trying to find a p-torsion point P on E, where p is a prime (P 6= 0),

not neceserally P ∈ E(Fq). We can find this point by means of modular polyno-

mials.

Let [m] : E → E is a morphism, i. e. there exist homogene polynomials

θm, wm, ψm such that [m].(P) = (θm : wm : ψm).

These polynomials are known and written recursively as (assuming W.L.O.G.)

z = 1:

ψ0(X, Y) = 0, ψ3(X, Y) = 3X4 + 6aX2 + 3bX − a2

ψ1(X,Y) = 1, ψ4(X, Y) = (2X2 + 10bX4 − 10a2X2 − 2baX − 2a− b2)ψ2

ψ2(X,Y) = Y , ψ2m+1(X, Y) = ψm+2.ψ
3
m − ψm−1ψ

2
m+1, m > 0

ψ2m(X, Y) = 1
ψ2

(ψm+2ψ
2
m+1 − ψm−2ψ

2
m+1)ψm.

P is a p-torsion point ⇔ P = O = (0 : 1 : 0) is the unique point at

infinity ⇔ ψp(P) = 0.

In fact: P is a p-torsion point on E ⇔ Y 2 = X3 + aX + b and ψm(X, Y) = 0.

W.L.O.G. we can assume that ψm is linear (substitude the non-linear terms with

the first equation). Then we can solve ψm with respect to Y , namely hm(X).

Therefore: P = (x : y : 1) ∈ E with p.P = O ⇔ hm(x) = 0 & Y 2 = X3+aX+b.

2.Step: For ψ = 0, · · · , p− 1, test whether now ψφ(P) = φ2(P) + q.P , where

φ is Frobenious and P is p-torsion point.

If YES: t = ψ mod(p) then by Corollary 2.1 part 2, we have a functional

equation

φ2 + q − tφ ≡ 0

so we have ψφ(P) = φ2(P)+q.P = t.φ(P)⇒ φ((ψ−t)p) = 0⇒ (ψ−t)p ∈ Ker(φ)

Ker(φ) = {(x : y : z) | (xq, yq, zq) = (0 : 1 : 0)} = {(0 : 1 : 0)} = {O}

⇒ (ψ − t).p = 0⇒ p | ψ − t⇒ t ≡ ψ mod(p).

lxxi

Hence we get t modulo p, then by means of Chinese Remainder Theorem

(CRT), we will get t mod(p1 · · · pk), and hence | E |= q + 1 − t. Note that this

algorithm was improved by Atkin and Elkies for details see [29], [48].

5.1.2 ECPP Algorithm (Goldwasser-Kilian)

In this section, we will give the algoritm due to Goldwasser & Kilian in a pseu-

docode due to Cohen [1].

ALGORITHM:ECPP Algorithm (Goldwasser-Kilian)

INPUT: a number N ∈ Z, whose primality will be (dis)proved,

OUTPUT: If N is composite , a divisor of N , if N is prime return TRUE.

1. Initialize Set i← 0 and Ni ← N .

2. Is Ni small? If Ni < 216, trial divide Ni by the primes from the list up to

215. If Ni is not prime GOTO step 9.

3. Choose a random curve Choose a and b at ’random’ in Z/NiZ, and

check that 4a3 +27b2 ∈ (Z/NiZ)∗. Let E be the elliptic curves whose affine

Weierstrass equation is y2 = x3 + ax+ b.

4. Use Schoof Using Schoof’s Algorithm, compute m ←| E(Z/NiZ) |. If

Schoof’s algorithm fails GOTO step 9.

5. Is m OK? Check whether m = 2q where q passes the Miller-Rabbin test

(or more generally, trial divide m up to a small bound, and check that

the remaining factor q passes the Miller-Rabbin test and is larger than

(4
√
Ni + 1)2). if this is not the case GOTO step 3.

6. Find P Choose at ’random’ x ∈ Z/NiZ until the Legendre (or Jacobi)

symbol (x
3+ax+b
Ni

) is equal to 0 or 1 (this will occur after a few trial at

most). Then compute y ∈ Z/NiZ such that y2 = x3 + ax + b. if there is a

failure GOTO step 9.

lxxii

7. Check P? Compute P1 ← m.P and P2 ← (m/q).P . If during the computa-

tions some division is impossible GOTO 9. Otherwise, check that P1 = OE,

i. e. that P1 = (0 : 1 : 0) in projective coordinates. If P1 6= OE, GOTO

step 9. finally if P2 = OE, GOTO step 6.

8. Recurse Set i← i+ 1 and Ni ← q and GOTO step 2.

9. Backtrack (We are here only when Ni is not prime, which is unlikely

occurence.) If i = 0, output a message saying that N is ’composite’ and

terminate the algorithm. Otherwise, set i← i− 1 and GOTO step 3.

Remark 5.1. As stated in the algorithm, if N is not a prime, the algorithm may

run indefinitely and so should perpaps not be called algorithm in this sense.

5.1.3 certificate

The results that we introduced in the last chapter can be without any reserve

applicable.

5.2 Atkin’s ECPP Algorithm

We see in this chapter and chapter 3 that the basic problem to be able to deal

with our primality proving algorithms is that we have to find the size of the

group of rational points of elliptic curves over a finite field Fq. This problem

is solved in Goldwasser-Kilian algorithm using the theoretical algorithm due to

Schoof. However, Schoof’s Algorithm and its variants seem almost impossible to

implement. We will therefore use the properties of elliptic curves over finite fields

related to complex multiplication, that we introduced in chapter 3.

5.2.1 Generating Elliptic Curves with Complex Multili-

cation

As we already defined in chapter 3, an elliptic curve has Complex Multiplication

(CM), if End(E) is strictly bigger than Z. By theorem 3.10, j(τ) is an algebraic

lxxiii

integer of degree hD. If Z[τ] is the maximal order of some imaginary quadratic

number field K, then H = K(j(τ)) is an extension of K of degree hD. This is

actually the maximal unramified abelian extension of K. As we already explained

in theorem 3.10, H is called the Hilbert class field of K, i. e. it is a field under

which every ideal in Z[τ] will become principal when considered as an ideal in ZH .

It is required to find the Hilbert class polynomial, HD(x), of theorem 3.10.

An intermediate approach will here be used to do this. Set q = e2iπτ , and

∆(τ) = q

(
1 +

∑
n≥1

(−1)n
(
qn(3n−1)/2 + qn(3n+1)/2

))24

.

This can be computed as if it was written. Then we will use the well-known

theorem on modular forms that

g3
2 − 27g2

3 =

(
2π

w2

)12

∆.

Now the formula that we will use for computing j(τ) is

j(τ) =
(256f(τ) + 1)3

f(τ)
,

where f(τ) = ∆(2τ)
∆(τ)

. Now we will give the algorithm to find the Hilbert class

Polynomial due to Cohen.

ALGORITHM: Hilbert Class Polynomial

Input: Given a negative discriminant D

Output: The monic polynomial of degree hD in Z[X] of which j((D +
√
D)/2)

is a root.

1. Initialize Set P ← 1, b← Dmod(2) and B ← b
√
| D | /3c;

2. For j = 0; to l do;

3. Initialize a Set t← (b2 −D)/4 and a← max(b, 1);

lxxiv

4. Test If a - t GOTO step 4. Otherwise compute j ← j((−b +
√
D)/(2a))

using the above formulas. Now if a = b or a2 = t or b = 0 set P ← P.(X−j),
else set P ← P.(X2 − 2Re(j)X+ | j |2);

5. Loop on a Set a← a+ 1. If a ≤ t, GOTO step 3;

6. Loop on b Set b← b+ 2, if b ≤ B GOTO step 2, otherwise coefficients of

P to the nearest integer, output P and terminate the algorithm.

We need to state a remark due to Cohen:

Remark 5.2. The final coefficients of P (known to be integers) must be computed

with an error at most 0.5 For this, we need to make a priori estimate on the size

of coefficients of P . In practise, we look at the constant term, which usually

not far from being the largest. This term is equal to the product of values

j((−b +
√
D)/(2a)) over all reduced forms (a, b, c), and the modulus of this is

approximately equal to eπ
√
|D|/(2a) hence the modulus of the constant term is

relatively close to 10k, where

k =
π
√
| D |

ln(10)

∑ 1

a
,

where the sum running over all reduced forms (a, b, c) of discriminant D.

Construction of elliptic curves with CM

Instead of taking ’random’ elliptic curves as in Goldwasser-Kilian algorithm, we

will choose elliptic curves with complex multiplication by an order of an imagi-

nary quadratic number field K = Q(
√
D) where N , our prime candidate, splits

as a product of two elements. This will enable us apply the theorem 3.15 due to

Deuring which will give us immediately the cardinality of E(Z/NZ).

In this case we will work as if N was prime, too. We must find a negative

discriminant D such that N splits as a product of two elements (so as to ensure

ourselves that the curve is not supersingular), and hence N is not inert in K. This

can be acchieved by means of Cornacchia’s algorithm of Chapter 2. Applying

lxxv

this algorithm repetitively to get a solution of x2 +Dy2 = 4N we can find such

a discriminant D. Once such a pair (x, y) is found than we have

π =
x+ y

√
D

2
,

now by applying Deuring, we get

m =| E(Z/NZ |= N + 1− π − π̄ = N + 1− x.

We know that m = p + 1 − t, where t is the trace of Frobenius. Recall that

t = π + π̄, where π is an element of norm N . A solution by means of Cornacchia

of x2 +Dy2 = 4N means that

π = ±x+ y
√
D

2
.

Then, the order N + 1 + x will be the order of quadratic twist of E. Hence,

by theorem 3.14 in general case we have just these two elliptic curves up to iso-

morphism (E and its quadratic twist), which actually proves the following lemma:

Lemma 5.2.1. Suppose E and E ′ have the same j-invariant but not isomorphic

to each other over a field Fp, where p is a prime. If j 6= 0 and j 6= 1728, then E ′

is quadratic twist of E and if E = p+ 1− t and E ′ = p+ 1 + t.

Proposition 5.1. Let w(D) be the numbers of roots of unity in the imaginary

quadratic order of discriminant D, hence w(D) = 2 if D < −4 (as in the above

case!), w(−4) = 4 and w(−3) = 6. Then there exist exactly w(D) isomorphism

classes of elliptic curves modulo N with CM by the imaginary quadratic order of

discriminant D

Proof : immediate from thm. 3.14.

Above proposition corresponds to the factorisation N = (ζπ)(ζ̄π), where ζ

runs over all w(D)-th roots of unity (note that this will in paricular correspond

to the above situation ζ = ±1 if D < −4).

lxxvi

Our second aim is to write down explicitely the equation of these elliptic

curves. Since N splits in the order of discriminant D, we have w(D) | N − 1

and there exist (N − 1)/2 values of g ∈ Z/NZ ((N − 1)/3 if D = −3) such that

g(N−1)/p 6= 1 for each prime dividing w(D). Choosing one values of g we get the

following equations of elliptic curves

Lemma 5.2.2. Let c = j/(1728− j), where j = j(D+
√
D

2
).

1. If D < −4 we have the following affine equation of ellitic curve E

y2 = x3 − 3cg2kx+ 2cg2k for K = 0 or 1.

2. If D = −4 we have

y2 = x3 − gkx for 0 ≤ k ≤ 3.

3. If D = −3 we have

y2 = x3 − gk for 0 ≤ k ≤ 5.

Now at the end we will explain how we can find the roots of Hilbert class poly-

nomials over Z/NZ. This is the problem of factoring, and hence finding the roots

of, polynomials over finite fields. We will introduce the so-called Berlekamp’s

algorithm to solve this problem, which is the generalisation of Gauss elemination

in Linear Algebra. For details see [46] and [2].

ALGORITHM: Berlekamp’s Algorithm

Input: Given a square-free polynomial f(x) of degree n in Z/NZ[x].

Output: The factorization of f(x) into monic irreducible polynomials.

1. For each i, 0 ≤ i ≤ n− 1, compute the polynomial;

xiNmod(f(x)) =
n−1∑
j=0

Nijx
j.

Note that each Nij is an element of Z/NZ.

2. Form the n× n matrix Q whose (i, j)-entry is Nij;

lxxvii

3. Determine a basis v1, · · · , vt for the null space of the matrix (Q−In), where

In is the n × n identity matrix. The number of irreducible polynomials of

f(x) is then precisely t;

4. Set F ← {f(x)}. (F is the set of factors of f(x) found so far; their product

is equal to f(x).);

5. For i from 1 to t do;

(a) For each polynomial h(x) ∈ F such that degh(x) > 1 do the following:

i. compute gcd(h(x), vi(x)− α) for each α ∈ Z/NZ,

ii. Replace h(x) in F by all those polynomials in the gcd computa-

tions whose degrees are ≥ 1.

(b) i← i+ 1.

6. Return the polynomials in F as the factors of f(x).

5.2.2 ECPP ALGORITHM (Atkin)

Now we will introduce our ECPP Algorithm due to Atkin in form of pseudocode.

As we saw in the proceeding section, our aim is now, instead of finding ’random’

elliptic curves and applying our DOWN-RUN strategy as in Goldwasser-Kilian,

to apply the the theory of complex multiplication for elliptic curves and to use

elliptic curves with complex multiplication in our general DOWN-RUN strategy.

Our aim here is that we will give at the first the algorithm and in the following

sections we are going to try to enhance the efficiency of the algorithm and to

try to optimize some of the computational problems coming together with our

algorithm and elliptic curve generation with CM in finite fields with large prime

characteristic.

ALGORITHM:ATKIN’S ECPP

INPUT: a number N ∈ Z, whose primality will be (dis)proved,

OUTPUT: If N is composite , a divisor of N , if N is prime return TRUE.

lxxviii

1. Initialize Set i← 0, n← 0 and Ni ← N .

2. Is Ni small? If Ni < 216, trial divide Ni by the primes from the list up to

215. If Ni is not prime GOTO step 14.

3. Choose next discriminant Let n ← n + 1 and D ← Dn.If (D
N

) 6= 1,

GOTO step 3. Otherwise, use Cornacchia’s Algorithm to find a solution,if

exists, of the equation x2+ | D | y2 = 4N . if no such solution exists, GOTO

step 3.

4. Factor m For m = N + 1 + x,m = N + 1 − x (and in addition for m =

N + 1 + 2y,m = M + 1 − 2y if D = −4, and m = N + 1 + (x + 3y),m =

N + 1− (x+ 3y)if D = −3), then factor m.

5. Does a suitable m exist? If, using the proceeding step, for at least one

value of m we can find a q dividing m which passes the Miller-Rabbin test

and > (4
√
Ni + 1)2, then GOTO step 6, otherwise GOTO step 3.

6. Compute the elliptic curve If D = −4, set a← −1, b← 0. If D = −3,

set a ← 0, b ← −1. Otherwise compute the minimal polynomial HD ∈
Z[X] of j((D +

√
D)/2). Then reduce HD modulo Ni and let j be one of

the roots of H̄D ≡ HDmod(Ni). Then set c ← j/(1728 − j) mod(Ni),

a← −3c mod(Ni), b← 2c mod(Ni).

7. Find g By making several ’random’ choices of g. find g such that g is a

quadratic non-residue modulo Ni, and in addition if D = −3, g(Ni−1)/3 6≡
1 mod(Ni).

8. Find P Choose at ’random’ x ∈ Z/NiZ until Legendre (resp. Jacobi)

symbol (x
3+ax+b
Ni

) is equal to 0 or 1 (this will occur in a few trial at most).

Then compute y ∈ Z/NiZ such that y2 = x3 +ax+ b (if this algorithm fails

GOTO step 14) Finally set k ← 0.

9. Find right curve Compute P2 ← (m/q).P and P1 ← q.P2 on the curve

whose affine coordinate is y2 = x3+ax+b. If during the computations some

lxxix

division was impossible, GOTO step 14. If P1 = O = (0 : 1 : 0) GOTO

step 12.

10. Set k ← k + 1. If k ≥ w(D) GOTO step 14, else if D < −4 set a ← ag2,

b← bg3, if D = −4 set a← ag, if D = −3 set b← bg and GOTO step 8.

11. Find a new P Choose at ’random’ x ∈ Z/NiZ until Legendre (resp. Ja-

cobi) symbol (x
3+ax+b
Ni

) is equal to 0 or 1 (this will occur in a few trial at

most). Then compute y ∈ Z/NiZ such that y2 = x3 + ax + b (if this al-

gorithm fails GOTO step 14). If P1 6= O = (0 : 1 : 0) then GOTO step

10.

12. Check P If P2 = OE, GOTO step 2.

13. Recurse Set i← i+ 1, Ni ← q and GOTO step 2.

14. Backtrack (We are here when Ni is not prime, which is very unlikely.)

If i = 0, output a message saying that N is composite and terminate the

algorithm. Otherwise, set i← i− 1 and GOTO step 3.

As seen in the algorithm, the basic difference comparing with Goldwasse-

Kilian is to find the elliptic curves with CM, after that we try to use the same

N − 1 analog DOWN-RUN strategy, that is applying this algorithm we will get

a list of probable primes and will try to prove the primality of smaller numbers

and by means of this number we will conclude the primality of our actual prime

candidate N .

5.2.3 Problems and Approaches

We are going to discuss in this section the problems that we have to deal with

coming together with our above algorithm and introduce some approaches to

make this algorithm more practical.

lxxx

Factoring m

Firstly, we have to check whether m satisfies the the condition which will enable

us to apply the Theorem 4.9, i. e. that m is not prime, but its largest prime

factor q is larger than (4
√
N + 1)2. Since we introduced a practical algorithm, we

have to deal with this problem much more seriously than in Goldwasser-Kilian

test. We will use firstly the trial divide m up to a much higher bound, and then

we will use much serious factorization algorithms such as Pollard-ρ and p− 1 to

factor m. Here are some approaches of Atkin to solve factorization problem:

Pollard’s ρ: It is reasonable to find all factors less than 108 with this method.

We decide to make 105 iterations of this method. Atkin accumulated the iterates

of the function and do only two gcd’s. See [42], [41] and [11].

ECM: One can use the algorithm as described in [41] with the parametriza-

tions of [42] and [41] for having curves with some prescribed small divisors.

One of the basic problem is the storage. One concentrates just on the numbers

< 10700 see [11].

Pollard’s p − 1: Note that this is reasonable when testing the Cunningham

numbers which have often the property of being congruent to ±1 modulo some

large known prime integer. So one can spend a little time to see whether we have

a possibility to get a factor of m of that type.

If m is not suitable to apply the conditions of theorem 4.9, we have still one

more change, that is we can use the other elliptic curves up to isomorphism as

we introduced in proposition 5.1 and lemma 5.2.2.

Which curve are we in?

We have w(D) elliptic curves modulo N , where D is an imaginary quadratic

discriminant (Corollary 5.1). However, a priori only one of these curves up to

isomorphism corresponds a suitable value of m, and it is not clear which one of

lxxxi

these. For D = −3 or D = −4 it is easy to see a recipe which one is actually

the right curve (As they are corresponding cases of j = 0 and j = 1728). For

D < −4, such a recipe is almost impossible to find. What we can do is simply

to compute m.P for our suitable m and a ’random’ P , (P 6= O), on one of these

two elliptic curves. If this is not equal to the identity, in projective coordinates

m.P 6= O = (0 : 1 : 0). If this is equal to identity we cannot conclude that we are

on the right curve, but as P has been randomly chosen, we can probably still use

the curve to satisfy the hypothesis of theorem 4.9. note also that, we do not need

to prove mathematically that our curve is the right one, since our aim is just to

satisfy the conditions of the theorem by means of a an elliptic curve over Z/NZ.

What is a good discriminant D?

In order to obtain the equation of the curve, it is necessary to find the values of

j modulo N . This is very very difficult if the class number hD is large. Hence,

we have to start with imaginary quadratic discriminant D whose corresponding

class numbers hD is as small as possible.

Remark 5.3. Some people have expressed concerns that using small class num-

bers hD in cryptographic purposes. Because, the resulting curve may be then

more amenable to some future attacks than more general field K. On average it

is expected that the class number of hD will grow as O(
√
D), so small class num-

bers are in some sence special as we explained in our ECPP algorithm. This may

cause possible a future, as yet unknown, attacks to try to solve discrete logarithm

problem (DLP), and hence cryptosystems, based on the groups of rational points

of elliptic curves constructed with CM-method. For details see [7].

Let p be a prime number. Then according to chapter 1 that p is a norm

in Q(
√
D) if and only if p is represented by the principal form of H(D). For

practical purposes as we introduced above, we can assume that D < 1016 with

hD ≤ 50. They form a set D We have then presumably | D |= 10628 (For details

[11]).

lxxxii

What happens if we have a theoretical failure?

We explained in chapter 3 that we have a complex multiplication, i. e. if End(E)

is strictly larger than Z, then we have two cases, namely

1. End(E) is an order of an imaginary quadratic number field,

2. End(E) is the maximal order of a quarternion algebra.

Our curve construction corresponds the first case, i. e. we constructed ellip-

tic curves which are an order of an imaginary quadratic number field. However,

if we face with the case 2 (supersingularity case), then it is possible to have a

theoretical failure:

If q ≤ (4
√
N + 1)2, then we cannot apply our theorem. In paricular, it cannot

be used when the number of points, m, is a perfect square and Z/NZ is isomorhic

to (Z/MZ)×(Z/MZ) with m = M2. This is exactly the case 2, i. e. if M | N−1.

We have also then by Hasse

√
N − 1 ≤M ≤

√
N + 1

putting b
√
Nc = a and N = a2 + r, with 0 < r < 2a + 1 ⇒ a ≤ M ≤ a + 1.

Suppose after that at the first M = a. Then as M | N − 1 we have

a | a2 + r − 1

that is a | r − 1. Then we have two cases.

• When r = 1, one has N = a2 + 1 and E has complex multiplication by

Q(D) with D = (m−N − 1)2 − 4N = −4a2.

• When r > 1 as 0 < r < 2a+ 1, we have r− 1 = a and thus N = a2 + a+ 1.

It is then easy to see that E has complex multiplication by Q(
√
−3). For

details see [11].

lxxxiii

Hilbert Polynomials

Proposition 5.2. The norm of j in Q(j), which is the same as HD(0), is the

cube of an integer in Z.

Proof see [11].

It is worth remarking here that we will not need to prove mathematically

that our computations regarding j are correct, as the ECPP algorithm and cor-

responding proof depends only on our calculations on the curves. We described

a method and algorithms in section 5.2.1 with special emphasis on the numerical

value of the function j(τ).

Atkin has checked and verified the result of the above proposition whether

HD(0) is a cube of an integer with error bound 0.5, as we have explained in 4.2.1

for the discriminant D = 23 and got the following Hilbert class polynomial

H23(X) = X3 + 3491750X2 − 5151296875X + 233753.

Weber Polynomials

The coefficients of HD(X) of j become larger if the class number hD grows.

Although, one can afterwards reduce the results modulo N , to compute these co-

efficients, we will need to use high precision computations of the values of j(τ) for

every quadratic irrational τ corresponding to reduced imaginary quadratic form

of discriminant D. Since these computations are independent of N, one of the

solution might be that results of these will be stored before going into algorithm,

but again as the coefficients are very large that even for a moderately sized list

we would need an enormous amount of storage.

In order to avoid such kinds of computational challenges, we are going to use

meromorphic functions which are closely related to the function j(τ) and which

have analogous arithmetic properties. These functions are called Weber functions

or Weber polynomials. Results are due to [11] and [7].

lxxxiv

Define the following Weber functions, using Dedekind’s η-function, η(z):

h(τ) = ζ−1
48

η((τ + 1)/2)

η(τ)
, h1(τ) =

η(τ/2)

η(τ)
, h2(τ) =

√
2
η(2τ)

η(τ)
,

γ2(τ) =
h(τ)24 − 16

h(τ)8
, γ3(τ) =

(h(τ)24 + 8)(h1(τ)
8 − h2(τ)

8)

h(τ)8
,

where ζn = e2πi/n. These functions are not all algebraically independent because

they are all related to j via the equations (for more details see [11]);

j =
(h24 − 16)3

h24
=

(h24
1 + 16)3

h24
1

=
(h24

2 + 16)3

h24
2

= γ3
2 = γ2

3 + 1728.

Weber calls µ(τ) a class invariant if µ(τ) lies in the Hilbert class field of Q(j).

Clearly j(τ) is a class invariant. Furher, with Weber functions one can determine

much more class invariants. These give rise to polynomials, abbreviated usually

by WD(X), using almost the same idea to compute HD(X). Finding roots of

these polynomials, which have considerably small coefficients in general, will al-

low us to recover the j-invariants.

Let −D be an imaginary quadratic discriminant and d be a square free pos-

itive integer such that Q(
√
−D) = Q(

√
−d). Then we can apply the following

conditions in turn

• If D ≡ 3 mod(6) use µ =
√
−D.γ3(τ),

• If D ≡ 7 mod(8) use µ = h(τ)/
√

2,

• If D ≡ 3 mod(8) use µ = h(τ),

• If D ≡ ±2 mod(8) use µ = h1(τ)/
√

2,

• If D ≡ 5 mod(8) use µ = h(τ)4,

• If D ≡ 3 mod(8) use µ = h(τ)2/
√

2.

The only problem here is that if we have D ≡ 3 mod(8) and D 6≡ 3 mod(6).

In that case the degree of Weber polynomial WD(x) is then 3hD not hD. So it is

lxxxv

a better idea then not to use such discriminants.

We get above for the case D = 23 the following Hilbert class polynomial

H23(X) = X3 + 3491750X2 − 5151296875X + 233753.

If we use the Weber polynomials instead of Hilbert class polynomials we get

W23(X) = X3 −X − 1.

The above example shows that how we can benefit by using Weber polynomials

instead of Hilbert class polynomials.

Furher discussions

Some improvement can be done by examining the possible splitting property of

the rational primes in the quadratic extension K = Q(
√
−d) and its Hilbert class

field. This reduces the following lemma due to [7]:

Lemma 5.2.3. Let d be a square free integer and p such that we can find a

solution to the diaphontine equation

p = x2 + dy2.

Then we have the followings;

1. If p ≡ 3 mod(8) then D ≡ 2, 3 or 7 mod(8).

2. If p ≡ 5 mod(8) then D ≡ 1 mod(2).

3. If p ≡ 7 mod(8) then D ≡ 3, 6 or 7 mod(8).

In particular, we must have (−d
p

) = (−D
p

) = 1.

As we introduced earlier one can perform the Berlekamp’s algorithm to factor

the polynomials HD over Z/NZ. However, this can be expensive, since for a

given N , the complexity of such a computation is basically proportional to the

lxxxvi

square of the degree of the polynomial, i. e. in our case ∼ hD. These explain

why we discarded the case D ≡ 3 mod(8), since in this case, we might work on

polynomials of degree 3hD. The methods to factor the polynomials over their

genus field and other computational remarks related to these can be found in

detail in the articel of Atkin. See [11].

5.2.4 certificate

As we introduced both in general ECPP algorithm and in ECPP algorithm of

Goldwasser & Kilian, it is also possible to verify the result of the algorithm, if we

have built a sequence of intermediate probable primes together with the found

elliptic curves and its number of points and a point on it satisfying the require-

ments of theorem. This is as we already explained is a certificate of primality.

This is generalization of the ideas of Pratt & Pomerence, see [45] and [44].

For example, Kaltofen and Valente agreed on the certification of 222-digit prime.

They also checked the 1226-digit record.

5.3 Remarks

We introduced the Atkin’ ECPP algorithm. In contrast to the ECPP algorithm of

Goldwasser and Kilian, this algorithm performs well in practice, since it is ample

to use this algorithm to prove the primality of numbers from 100 to thousands

decimal digits and more. It is possible with current technology of computers

to test the arbitrary integers up to 400 digits in a few days on a single SUN

3/60 workstation with this algorithm. Numbers with less than 800 digits can be

performed in about one week of real time using distributed process on about 10

workstations.

lxxxvii

However, there are also some remaining uncertainties to find the best strategy

for applying methods to larger probable prime inputs. The general operations

which should be implemented efficiently and optimally , and whose timings on a

particular machine are relavent to the strategy are:

• Sieving and subsequent factorization of the number of points of groups of

rational points of an elliptic curve,

• Exponentiaton modulo a large prime p (and equivalent square roots, pseu-

doprime tests),

• Exponention on elliptic curves modulo a large prime p,

• Solution of polynomial equation congruences modulo a large prime p.

lxxxviii

chapter 6

Analysis

In this chapter, we are going to analyze the running time complexities of our

ECPP algorithms due to Goldwasser-Kilian and Atkin, respectively.

6.1 Preliminaries

The following two theorems due to Heath-Brown and Lenstra, respectively, allow

us to analyze our algorithm for uniformly distributed inputs.

Theorem 6.1. Heath-Brown Call an integer y sparse if there are less then
√
y/2blog yc primes in the interval [y, y + b√yc]. Then there exist a constant α

such that for sufficiently large x,

| {y : y ∈ [x, 2x], y is sparse} |< x5/6logα x.

Proof: see [9].

Theorem 6.2. Lenstra Let p > 5 be a prime. Let,

S ⊆ [p+ 1− b√pc, p+ 1 + b√pc].

If a curve given by (A,B), A, B ∈ Z in Weierstrass normal form, over Zp is

chosen uniformly, then,

prob(| (A,B) |∈ S) >
c

log p
.
| S | −2

2b√pc+ 1
,

where c is a some fixed constant.

lxxxix

Proof: see [9].

Essentially the size of a ’random’ group is at most O(1/log p) times less likely

to have a particular property as a randomly selected integer in

[p+ 1− b√pc, p+ 1 + b√pc],

provided that | S |> 2.

6.2 Analysis

We are going to firstly have a look at the analysis of random elliptic curve genera-

tion, which satisfies the conditions of our main theorem 4.9. We now analyse the

running time of elliptic curve generation part satisfying our condition in terms of

the number of points in an appropriate interval around p/2. Define S(p) by

S(p) :=

{
q : q ∈

[
p+ 1− b√pc

2
,
p+ 1 + b√pc

2

]
, q is prime

}
.

Lemma 6.2.1. Let p > 5 be a k-bit prime, and suppose that | S(p) |= O(
√
p/logc p).

Then prime number generation will run for expected O(kc+8) steps before it ter-

minates.

Proof: see [9].

Lemma 6.2.2. Let p > 5 be a prime, and let (A,B) be chosen uniformly from

curves over Zp. Let also S(p) be defined as above. Then

prop(| (A,B) | is twice a prime) > c

log p
.
| S(p) | −2

2b√pc
+ 1,

where c is some fixed constant.

Proof: see [9].

After introducing the basic facts which was used to analyse the ECPP algo-

rithm of Goldwasser & Kilian, we are going to give the theorems which and their

prove can be found in [32] and [24] in details.

xc

Theorem 6.3. Suppose that there exist two positive constants c1 and c2 such

that the number of primes in the interval [x;x +
√

2x] (x ≥ 2) is greater than

c1
√
x(logx)−c2 . Then Goldwasser-Kilian algorithm proves the primality of N in

expected time O((log N)10+c2).

Theorem 6.4. There exists two positive constants c3 and c4 such that for all

k ≥ 2, the proportion of prime numbers N of k-bits for which the expected time of

Goldwasser-Kilian algorithm is bounded by c3(log N)11 is at least 1−c82−k
1

loglog k
.

At the end we can summarize the analyzis of the algorithm as follows:

1. Given an input of length k, the algorithm produces a certificate of primality

that is of length O(k2), and requires O(k4) steps to verify.

2. The algorithm terminates in expected polynomial time on every prime num-

ber, provided that the following conjecture is true:

CONJECTURE : (∃c1, c2 > 0)π(x+
√
x)− π(x) ≥ c2

√
x

logc1 x
,

for x sufficiently large.

3. There exist constants c1 and c2 such that for all k sufficiently large, the

algorithm will terminate in expected c1k
11 time for all but at most,

2k

2k
c2/log log k

,

of the inputs. In other words, the algorithms can be proved to run quickly

on all but vanishingly small fraction of the prime numbers.

As for Goldwasser-Kilian algorithm, we have only the heuristic analysis cited

in [33]. Atkin and Morain found that the running time of Atkin’s ECPP is

roughly O((log N)6+ε). for some ε > 0. Other implementation details and prac-

tical considerations to make this algorithm more practical and more optimized

was briefly discussed in chapter 5, and for further details see [11].

xci

chapter 7

Implementation, LiDIA classes

and Conclusion

7.1 Implementation details

7.1.1 SINGULAR source codes Examples

We will start with our implementations with a prime listing algorithm (like sieve of

Eratosthenes) in programming language SINGULAR by using the prime funtion.

Note: Limitation for the integers in SINGULAR (upper bound) is 2147483647.

...

//The following function computes the list of primes given

//in lower and upper bound from bigger to smaller

//Written by Osmanbey Uzunkol...

proc primelist(int a,int b){

list myprime;

int temp=prime(b);

myprime[1]=temp;

int temp2=temp;

if (a!=1) {//if..

for(int i=2;temp>a;i++) {//if.

temp=prime((temp2-1));

xcii

if ((temp>a)&& (temp>2)) {

myprime[i]=temp;

temp2=temp; }

}//end of if.

return(myprime);//end of if..

}

else {

list myprime2=primelist((a+1),b);

int b=size(myprime2);

list myprime3;

for (int i=1;i<=b;i++) {

myprime3[i]=myprime2[i];

}

myprime3[b+1]=2;

return(myprime3);

}

}

...

Example: Let us illustrate how this function works with a small example:

...

> primelist(45353109,45353264);

[1]:

45353237

[2]:

45353207

[3]:

45353201

[4]:

xciii

45353183

[5]:

45353173

[6]:

45353149

[7]:

45353111

...

...

//Following programme tests whether the given prime candidate N

//passes the trial-division algorithm as explained in the thesis

//It computes the primes up to 32768 in a list and then tries to

//divide the candidate any of this list elements. If one of the element

//divides N then returns the prime, and proves that this number is

//composite together with its divisor. If it returns 1 then we have a

// (probable) prime. Written by Osmanbey Uzunkol...

ring r=0,x,lp; //in order to use the type number to compute big integers

proc isdivisible(number N) {

list l=primelist(1,32768); //note that this option can be changed

int temp=size(l); //depending on the situation...

int i=1;

while(i<=temp) {

if ((N mod l[i])==0){

if (l[i]!=N){

return(l[i]);

}

else {

return(1);

}

xciv

}//end of if

i++ ;

}

return(1);

}

...

Example: The following example illustrates and prove that given number is

divisible by the prime 3251.

...

> isdivisible(1992882373366515526677171625362176265267366353667161984875872441);

// ** redefining b **

3251

...

Example: The following example shows that the given candidate 1532986441051165789751670481

04782789635951257974397 is (probable) prime. Although it is actually not, since

153298644105116578975167048104782789635951257974397 = 9661373.15867169615034693203043

402641092812547031489.

...

> isdivisible(153298644105116578975167048104782789635951257974397);

// ** redefining b **

1

...

...

//The following fuction computes the Legendre symbol for primes and Jacobi

//symbol for integers in general as explained in the thesis.

//Written by Osmanbey Uzunkol..

ring r=0,x,lp;

xcv

proc Jacobi(number a,number n) {

int i;

int s;

number temp=a;

a=a mod n;

if (a==0) {

return(0);}

if (a==1) {

return(1);}

if (gcd(a,n)>1) {

return(0); }

else {

while(temp mod 2==0) {

temp=(temp/2);

i++;

}

if (i%2==0){ s=1;}

else {

if((n mod 8)==1||(n mod 8)==7) {

s=1; }

else {

s=-1;}

}

if (((n mod 4)==3) && ((temp mod 4)==3)) {

s=(-s); }

if (temp!=1) {

number n1=n mod temp;

int temp1=s*Jacobi(n1,temp);

return(temp1);

}

xcvi

else {

if (i%2==0) {

return(1); }

else {

if((n mod 8)==1||(n mod 8)==7) {

return(1); }

else {

return(-1); }

}

}

}//end of else

}

...

Example: Some examples of Jacobi funtion: For the first example as gcd(14414442441, 1626616611

101713) = 7, we have;

...

> Jacobi(14414442441,1626616611101713);

0

...

Second and third one illustrate the case of quadratic residue and non-residue,

respectively.

...

> Jacobi(64553633552,3232442001);

1

> Jacobi(77575775,288287376);

-1

...

...

//The following function may be used instead of primelist function in

xcvii

//fermattest and Sollovay-Strassen Test.

//Written by Osmanbey Uzunkol..

proc base(int a){

list l;

int j=1;

for(j=1;j<=a;j++){

l[j]=j+1;

}

return(l);

}

...

...

//This function tests the primality (actually compositeness)

//of the prime candidate N by using Fermat primality test

//as explained in the thesis with the chosen prime base elements

//between the below given bounds.Upper bound can be changed

//within the limitations of integers in SINGULAR.

//Note that with a fast multiplication methods as we explained

//for elliptic curves the efficiency can be speeded up. If

//the answer takes much time than one has to use C++ version.

//Written by Osmanbey Uzunkol.

ring r=0,x,lp;

proc fermattest(number N){

if(isdivisible(N)>1){

return(0);}

else{

number r;

number temp;

number exp=(N-1);

xcviii

number j;

list l=primelist(32768,33768);

int k=size(l);

int i;

for(i=1;i<=k;i++) {

r=1;

for(j=1;j<=exp;j=j+1){

temp=l[i]*r;

r=temp mod N;

}

if(r mod N!=1 mod N){

return(0); }

}

return(1);

}

}

...

Example: The compositeness of the candidate 64366536553727646563 was proven

by calling the fermattest:

...

> fermattest(64366536553727646563);

// ** redefining b **

0

...

Furhermore, the (probable) primality of the following integer, which is a divisor

of the above integer, was also proven. However, it takes lots of time as the

multiplication procedure is slow in SINGULAR. Actually, if it takes more than 1

minute, the answer is probably a probable prime but it is a better idea to check

it in C++ version.

xcix

...

> fermattest(3608596543910279);

// ** redefining b **

1

...

...

//This function tests the primality (actually compositeness)

//of the prime candidate N by using Sollovay-Strassen primality test

//as explained in the thesis with the chosen prime base elements(not random)

//between the below given bounds.Upper bound can be changed

//within the limitations of integers in SINGULAR.

//Note that with a fast multiplication methods as we explained

//for elliptic curves the efficiency can be speeded up. If

//the answer takes much time than one has to use C++ version.

//Written by Osmanbey Uzunkol.

ring r=0,x,lp;

proc sollovay_strassen (number N){

if(isdivisible(N)>1){

return(0);}

else{

number r;

number temp;

number exp=((N-1)/2);

number j;

list l=primelist(32768,33768);

int k=size(l);

int i;

for(i=1;i<=k;i++) {

r=1;

for(j=1;j<=exp;j=j+1){

c

temp=l[i]*r;

r=temp mod N;

}

if(r mod N!=Jacobi(l[i],N) mod N){

return(0); }

}

return(1);

}

}

...

Example: We will give two examples one is composite the other is (probable)

prime. However, the caution that we mentioned in fermattest is also the case

here.

...

> sollovay_strassen(424234251616626552525441551421);

// ** redefining b **

0

...

...

> sollovay_strassen(91346224180575661878056249);

// ** redefining b **

1

...

7.1.2 C + + source codes, used classes and Examples

In this section, we will see some implementation of primality tests with the help

LiDIA C++ library for Computational Number Theory. At the end by means of

ci

primeproof method developed by J. Hechler, see [30] for LIDIA, the implemen-

tation of ECPP algorithm will be given in an example file written in C++ with

examples.

Here with the help of primelist function a list of primes in a given lower/upper

bounds:

...

//This programme computes a list of prime numbers given in

//lower and upper bound. It is almost the same as wriitten

//in SINGULAR, but it is more efficient

//due to fast computational capability of LiDIA

//written by Osmanbey Uzunkol

#include <LiDIA/prime_list.h>

#include <iostream>

using namespace LiDIA;

using namespace std;

unsigned long * primelist(unsigned long lower,unsigned long upper){

unsigned long *prime;

prime_list primelist(lower,upper);

int i;

i=primelist.get_number_of_primes ();

int j=0;

prime[j]=primelist.get_first_prime();

unsigned long temp=prime[i];

while (j<i)

{

j++;

prime[j] = primelist.get_next_prime();

temp=prime[j];

}

return(prime);

cii

}

int size_primelist(unsigned long lower,unsigned long upper){

unsigned long *prime;

prime_list primelist(lower,upper);

int i;

i=primelist.get_number_of_primes ();

return(i);

}

int main()

{

unsigned long lower, upper, prime;

cout << "Please enter lower bound: "; cin >> lower ;

cout << "Please enter upper bound: "; cin >> upper ;

cout << endl;

prime_list p_list(lower, upper);

prime = p_list.get_first_prime();

while (prime)

{

cout << prime << endl;

prime = p_list.get_next_prime();

}

return 0;

}

...

Example: the same example that we gave for primelist function for SINGU-

LAR (note that in this time list is from smaller prime to bigger:

...

Please enter the lower bound: 45353109

ciii

Please enter the upper bound: 45353264

45353111

45353149

45353173

45353183

45353201

45353207

45353237

...

...

int isdivisible(unsigned long N){

unsigned long p;

prime_list pl(2, 10000000);

for(p = pl.get_first_prime();p<1000000;p=pl.get_next_prime){

if (N%p==0) return(0);

else return(1); }

}

#include <LiDIA/prime_list.h>

#include <iostream>

using namespace LiDIA;

using namespace std;

int main()

{

unsigned long N;

cout<<"enter the possible prime <10^14"<< N; cin>>N;

cout<<endl;

cout<<isdivisible(N)<<endl;

return 0;

}

civ

...

...

//This example programme computes Legendre-Jacobi symbol

//as in the SINGULAR...

//exaple written by Osmanbey Uzunkol..

#include <LiDIA/bigint.h>

#include <iostream>

using namespace LiDIA;

using namespace std;

int main(){

//In this programme we will compute

//Jacobi/Legendre symbol of (a/n)

bigint a,N;

cout<<"Please enter the value of a: "; cin>>a;

cout<<"Please enter the value of N: "; cin>>N;

int i=jacobi(a,N);

cout<<"The Jacobi(Legendre)-symbol is: "<<i<<endl;

return(0);

}

...

Example: As in the case of singular, three cases of Jacobi-symbol will be given

as examples:

...

please enter the value of a: 7176672728939384494949948949

please enter the value of n: 82272666155561551666616617177100101

The Jacobi(Legendre)-symbol is: 1

...

...

cv

please enter the value of a: 6546647437473783882871

please enter the value of n: 6161652526626616117711172782271

The Jacobi(Legendre)-symbol is: -1

...

...

please enter the value of a: 10786846916586309307182037205410965

please enter the value of n: 100000000181152552587186285254317809165567093021

The Jacobi(Legendre)-symbol is: 0

...

...

//The source code of fermattest of LiDIA will be given in this programme

//example file written by Osmanbey Uzunkol..

#include <LiDIA/bigint.h>

#include <iostream>

using namespace LiDIA;

using namespace std;

int fermattest(const bigint & n)

{

bigint tmp_a, tmp_n, res;

register int a = 2;

if (n < 2)

return 0;

if ((n == 2) || (n == 3) || (n == 5) || (n == 7))

return 1;

tmp_n.assign(n);

dec(tmp_n);

while (a <= 7) {

cvi

if (!remainder(n, a))

return 0;

else {

tmp_a.assign(a);

power_mod(res, tmp_a, tmp_n, n);

if (!res.is_one())

return 0;

else {

if (a == 2)

a += 1;

else

a += 2;

}

}

}

return 1;

}

int main()

{

bigint N;

cout<<"please enter the prime candidate N : "; cin>>N;

cout<<endl;

if(fermattest(N)) cout<<N<<" is (probably) prime"<<endl;

else cout<<N<<" is a composite number"<<endl;

return 0;

}

...

Example: The following two examples will show composite and (probable) prime

cases, respectively

...

please enter the prime cadidate N: 4343552525663633554245226366366355351

cvii

4343552525663633554245226366366355351 is a composite number

...

...

please enter the prime cadidate N: 2543015553938550490663

2543015553938550490663 is a (probably) prime

...

...

//The source code of fermattest of LiDIA will be given in this programme

//example file written by Osmanbey Uzunkol..

#include <LiDIA/bigint.h>

#include <iostream>

using namespace LiDIA;

using namespace std;

bool

bigint::is_prime (const int b1) const

{

static long a[10] = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31};

long b, j, ok, i, k = 0, sx;

if (!longify(sx)) {

// can not be converted to long

if (sx <= 0)

return false;

if (sx == 2)

return true;

if (sx <= 31) {

for (i = 0; i < 10; i++)

if (sx == a[i])

return true;

cviii

return false;

}

}

if (is_le_zero() || is_even())

return false;

if (b1 <= 0)

lidia_error_handler("is_prime", "#tests <= 0");

if (b1 > 9)

b = 9;

else

b = b1;

bigint erg;

bigint H(37), Q(*this);

Q.dec();

bigint N_minus1(Q);

while (Q.is_even()) {

Q.divide_by_2();

k++;

}

for (i = 0; i <= b; i++) {

power_mod(erg, bigint(a[i]), Q, *this);

if (!erg.is_one() && erg.compare(N_minus1)) {

j = k;

cix

ok = 0;

while ((j > 0) && !ok) {

square(erg, erg);

remainder(erg, erg, *this);

if (!erg.compare(N_minus1)) ok = 1;

j--;

}

if (!ok) {

return false;

}

}

}

for (; i <= b1; i++) {

if (!compare(H))

return true;

power_mod(erg, H, Q, *this);

if (!erg.is_one() && erg.compare(N_minus1)) {

j = k;

ok = 0;

while ((j > 0) && !ok) {

square(erg, erg);

remainder(erg, erg, *this);

if (!erg.compare(N_minus1)) ok = 1;

cx

j--;

}

if (!ok) {

return false;

}

}

H = H.next_prime();

}

return true;

}

int main(){

bigint N;

cout<<"Please enter the prime cadidate :"; cin>>N;

if (is_prime(N,10))

cout<<N<<" is (probable) prime"<<endl;

else

cout<<N<<" is composite"<<endl;

return 0;

}

...

...

please enter the prime cadidate :6636536366366363636555626266263101

6636536366366363636555626266263101 is composite

...

cxi

...

please enter the prime cadidate: 449017159180743482307697943

449017159180743482307697943 is (probable) prime

...

...

//A factorization example for use in N-1 or N+1

//tests when we can factorize the intger fully.

//Note that there are other factorizetion functions that

//enable us to test the primality of N if the

//partial factorization is available for N-1 or N+1.

#include <LiDIA/rational_factorization.h>

#include <iostream>

using namespace LiDIA;

using namespace std;

int main()

{

rational_factorization f;

bigint n;

cout << "\n Please enter a number: ";

cin >> n;

f.assign(n);

f.factor();

if (f.is_prime_factorization())

cout<<"\n Prime Factorization: " << f << endl;

else

cout<<"\n Factorization: "<< f << endl;

return 0;

}

...

Example: an example of prime factorization of integer N in the form (pi, ei)

cxii

where

N =
k∏
i=1

pei
i where p′is are prime;

...

Please enter a number: 722373666447774889299438843747747773738

Prime Factorization: [(2,1),(137,1),(281,1),(4787,1),(393373,1),

(5327244139616992287109027,1)]

...

We will see the Cornacchia algorithms written in the bigint class of LiDIA due

to the pseudocode (Modified Cornacchia’s algorithms) that we gave in chapter 2.

...

bool cornacchia (bigint & x, bigint & y, const bigint & DD, const bigint & p)

{

bigint x0, a, b, l, r;

bigint D, tmp2, D_abs, p_four;

bigint rr;

bool r_is_sqr;

long s;

if (!DD.is_negative())

lidia_error_handler("cornacchia", "D not negative");

s = (4 - (DD.least_significant_digit() & 3)) & 3; // DD mod 4

shift_left(p_four, p, 2);

D.assign(DD);

if (!is_prime(p) || !p.is_positive() || p == 2)

lidia_error_handler("cornacchia", "no odd prime number");

if ((-D) >= p_four)

cxiii

lidia_error_handler("cornacchia", "|D| >= 4*p");

if (s != 1 && s != 0)

lidia_error_handler("cornacchia", "D != 0 or 1 mod 4");

if (jacobi(D, p) == -1) {

return false; // (D/p) = -1 -->no solution

}

else {

ressol(x0, p+D, p);

if (x0.is_even() != D.is_even())

subtract(x0, p, x0);

shift_left(a, p, 1);

b.assign(x0);

shift_left(l, p, 2);

sqrt(l, l); // l = floor(2*sqrt(p)) = floor(sqrt(4p))

while (b > l) {

remainder(r, a, b);

a.assign(b);

b.assign(r);

}

square(l, b);

subtract(a, p_four, l);

// a = 4p - b^2 now

D.negate();

remainder(r, a, D);

cxiv

if (!r.is_zero()) {

return false;

}

else {

divide(r, a, D);

r_is_sqr = is_square (rr, r);

if (!r_is_sqr) {

return false;

}

else {

x.assign(b);

y.assign(rr);

return true;

}

}

}

}

...

Now at the end, we will use the primeproof class (see for more details [30] and

[20]) to write down an example file in C++ and give examples of N − 1, N + 1

and ECPP algorithms;

...

#include <iostream>

#include <LiDIA/bigint.h>

#include <LiDIA/prime_proof.h>

#include <LiDIA/certificate.h>

using namespace LiDIA;

using namespace std;

int main()

{

cxv

bigint N;

cout << "Please enter the prime candidate : ";

cin >>N;

prime_proof proof;

certificate c;

proof.set_verbose(true);

proof.set_ecpp_mode(1);

proof.set_prime(N);

bool success = proof.prove_prime();

if(success)

cout<<N<<" is prime"<<endl;

else cout<<N<<" is not prime"<<endl;

return 0;

}

..

Examples:

..

Please enter the prime candidate : 2142973051

Primelength:10

Make the SPP test

SPP: n-1=2^l*q, l: 1 q: 1071486525

SPP: Test was succesful

2142973051 is prime

..

..

Please enter the prime candidate : 138934276198614100615367165789108366819377188

1773889298737782991998387756530022001881727277301776266377277271

Primelength:109

13893427619861410061536716578910836681937718817738892987377829919983877565300220

cxvi

01881727277301776266377277271 is not prime

..

..

Please enter the prime candidate : 614367291872088173452017745619376378920198837

62567829919982778299100166355178390100988277164520918846551729001987262661567188

17272663781899199882772891991000093838829928839928882999288891977177188818881177

11000118811717

Primelength:219

61436729187208817345201774561937637892019883762567829919982778299100166355178390

10098827716452091884655172900198726266156718817272663781899199882772891991000093

83882992883992888299928889197717718881888117711000118811717 is not prime

..

We will finish this section by giving a primality proof by using ECPP in

an easy to understand form due to [7]. Note that it is easy to verify and get

certificate by means of intermediate datas below;

..

1267650600228229401496703205653

169317673849406496638751929789 535428649309014131591402355077

1223116517107234371890879608558 348818700976692547697219665601

1267650600228230776357544186344

1764763222984205716110037

1764763222984205716110037

1237106009019141934754397 824737339346094623169598

498566265383685655850376 1698160958763013389415626

1764763222981587729747968

21321838780409719

cxvii

21321838780409719

5979072666605065 11093328037873283

12289991207526417 5086330291908954

21321839059327264

636820759

..

Using DOWN-RUN, we got the number 636820759. By calling the primelist

function, we can easily see that this number is prime by means of trial divi-

sion. Hence, we proved the primality of 1267650600228229401496703205653 by

reducing the primality of it to the prime 636820759.

7.2 Conclusion

The aim of this thesis was to introduce modern primality testing methods and

to explain the so-called Atkin’s ECPP Algorithm. Most of the primality tests

were covered by means of explaining the necessary theoretical background coming

from algebra, number theory and arithmetic of elliptic curves and by means of

introducing the methods in an algorithmic approach. Furthermore, we introduced

intensively the computational problems and solutions coming together with the

theory of elliptic curves, in particular curves with CM. Additionally, approaches

to make the ECPP algorithm more practical were also discussed. At the end

of thesis, several programming examples of primality tests are given together

with the examples of Atkin’s ECPP in computer algebra system SINGULAR and

programming language C++, with the help of using LiDIA computer package for

computational number theory.

cxviii

references

cxix

references

[1] H. Cohen, A Course in Computational Algebraic Number Theory, Springer-

Verlag, Second corrected Printing, 1995,

[2] A.J.Menezes, P.C. van Oorschot, S.A. Vanstone. Kornberg, Handbook of Ap-

plied Cryptography, CRC Press, 1996,

[3] J. Buchmann, Einführung in die Kryptographie, Springer-Verlag, 1999,

[4] M. O. Rabin, Probabilistic Primality Testing, J. Number Theory, 12(1980)

128-138,

[5] J. Silverman, Advanced topics in the arithmetic of Elliptic Curves, Springer-

Verlag, 1994,

[6] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986,

[7] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography, Cambridge

University Press, 1999,

[8] N. Koblitz, A Course in Number Theory and Cryptography, Springer-Verlag,

1987,

[9] S. Goldwasser, J. Kilian, Primality Testing Using Elliptic Curves,

[10] L. M. Adleman, C. Pomerance, R. Rumely On distinguishing prime numbers

from composite numbers, Ann. Math. 117, 173-206,

[11] A. O. L. Atkin, F. Morain, Elliptic curves and Primality Proving, Math.

Comp. , 61, 29-67, 1993,

[12] M.Agraval, N.Kayal, N.Sexana, Primes is in P , paper August 2002,

[13] D. Cox, Primes of the form x2 + ny2, John Wiley and Sons, 1989,

cxx

[14] H. Cohen, A. K. Lenstra Implementation of a new primality test, Math.

Comp. 48, 177(1987), 103-121,

[15] S. Galbraith, J. McKee, The probability that the number of points on an

elliptic curve over a finite field is prime, Journal of the London Mathematical

Society, 62, no. 3, pg. 671-684, 2000,

[16] Geometrische Methoden in der Kryptographie, Vorlesungsskript TU-

Kaiserslautern, SS 2003,

[17] Primzahltests and Kryptographie I-II, Vorlesungsskript TU-Kaiserslautern,

WS 2003-2004 and SS 2003,

[18] Algebraische Geometrie I, Vorlesungsskript TU-Kaiserslautern, WS 2002-

2003,

[19] F. Morain, Building cyclic elliptic curves modulo large primes, Eurocrypt’91,

pg. 531-543,

[20] LIDIA C++ library for computational number Theory, www.informatik.tu-

darmstadt.de/TI/LiDIA /Wellcome.html,

[21] S. B. Lippman, C++ Primer, 2.Edition, Addison-Wesley,

[22] G.-M. Greuel, G. Pfister, H. Schoenemann A Computer Algebra System for

Polynomial Computations, FB Mathematik TU-Kaiserslautern,

[23] M. Welschenbach, Kryptographie in C und C++, 2. Auflage, Springer-Verlag,

[24] S. Goldwasser, J. Kilian, almost all primes can be quickly certified, in 18th

Annual Symposium on Foundations of Computer Science, IEEE, pg. 316-329,

Berkeley, California, May 1986,

[25] L. M. Adleman, M. A. Huang Recognizing primes in random polynomial

time, in Proceedings 19th STOC(1986) ACM Press, pg. 462-469, New-york

City, May 25-27, 1987,

cxxi

[26] E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp.

24, 111 (1970), 713-735,

[27] W. Bosma, Primality testing using elliptic curves, Tech. Rep. 85-12, Math.

Instituut, Universiteit van Amsterdam, 1985,

[28] P. Mihailescu, F. Morain, Dual elliptic primes and Cyclotomy primality prov-

ing,

[29] N. D. Elkies, Elliptic and modular curves over finite fields and related compu-

tational issues, in Computational perspectives on Number Theory: Proceed-

ings of a Conference in honor of A. O. L. Atkin, American Mathematical

Society International Press, 7, 1998,

[30] J. Hechler, Primzahlnachweis mit Hilfe elliptischer Kurven, Diplomarbeit,

Okt. 2003 TU-Darmstadt,

[31] H. W. Lenstra, JR. Elliptic curves and number theoretic algorithms, Trch.

Rep. Report 86-19 , Math.Inst., Univ. Amsterdam, 1986,

[32] H. Cohen,H. W. Lenstra, Primality testing and Jacobi sums, Math. comp.

42, 165(1984), 297-330,

[33] A. K. Lenstra, H. W. Lenstra, JR. Algorithms in number theoty, In Hand-

book of Theoretical Computer Science, J. van Leeuwen, Ed. vol. A: Algo-

rithms and Complexity. North Holland, 1990, ch. 12, pp. 674-715,

[34] K. Ireland, M. Rosen, A classical introduction to modern number theory, vol.

84 of Graduate texts in Mathematics, Springer, 1982,

[35] F. Morain, Elliptic curves, primality proving and some titanic primes, 1989,

(1992),

[36] F. Morain, J. Olivos Speeding up the computations on an elliptic curve using

addition-substraction chain, Info. Theory Appl. 24, 531-543, 1990,

[37] W. E. Clark, J. J. Liang On arithmetic weight for a general radics represen-

tation of integers, IEEE Trans. Info. Theory, 19, 823-826, 1973,

cxxii

[38] C. H. van Lint, Introduction to Coding Theory, Springer-Verlag, 1982,

[39] G. Reitwiesner, Binary Arithmetic, Adv. in Comp., 1, 231-308, 1960,

[40] P. Ribenboim, The book of prime number records, Third edition Springer

1995,

[41] R. P. Brent, Some integer factorization using elliptic curves, Australian Com-

puter Science Communications 8(1986), 149-163,

[42] P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factor-

ization, Math. Comp. 48, 177 (January 1987), 243-264,

[43] A. O. J. McKee, Subtleties in the distribution of the numbers of points on

elliptic curves over a finite field, J. LMS,

[44] C. Pomerence, Very short primality proofs, Math. Comp. 48, 177 (1987),

315-322,

[45] V. R. Pratt, Every prime has sufficient certificate, SIAM J. Comput. 4

(1975), 214-220,

[46] Einführung in die Computer Algebra, Vorlesungsskript WS 2002-2003,

[47] F. Morain , Distributed primality proving and the primality of (23539 + 1)/3,

In Advanced Cryptology - EUROCRYPT’90 (1991), I. B. Demgard, Ed., vol.

473 of Lect. Notes in Computer Science, Springer-Verlag, pp. 110-123. Pro-

ceedings of the Workshop on the Theory and Application of Cryptographic

Techniques, Aarhus, Denmark, May 21-24, 1990,

[48] O. Atkin The number of points on an elliptic curve modulo a prime,

manuscript (1991),

[49] T. Oetiker, H. Partl, I. Hyna, E. Schlegl, A not very short Introduction to

LATeX, Version 1.0, November 16, 1994.

cxxiii

