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Abstract

Efficient Enumeration of Extensions of Local Fields

with Bounded Discriminant

Sebastian Pauli, Ph.D.
Concordia University, 2001

Let k be a p-adic field. It is well-known that k has only finitely many extensions of a
given finite degree. Krasner [1966] gives formulae for the number of extensions of a
given degree and discriminant. Following his work, we present an algorithm for the
computation of generating polynomials for all extensions K /k of a given degree and
discriminant. We also present canonical sets of generating polynomials of extensions
of degree p™. Some methods from the proof of the number of extensions of a given
degree and discriminant can also be used for the determination of a bound that gives
a considerably improved estimate of the complexity of polynomial factorization over
local fields. We use this bound in an efficient new algorithm for factoring a polynomial
@ over a local field k. For every irreducible factor ¢(x) of @(z) our algorithm returns

an integral basis for k[z]/¢(z)k[z] over k.
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Introduction

Let k be a local field, i.e., a field complete with respect to a discrete prime divisor

p, and fix an algebraic closure k of k.

Most results in chapter 2 hold for a local field in general; this includes local fields

with infinite residue class field.

In chapter 3 the field k will be a finite extension of the p-adic numbers Q, for some

prime number p.

For K a finite extension of k the description of the lattice of extensions of K in k is

an important problem in the theory of p-adic fields.

If we restrict our attention to Abelian extensions then this description is complete
and is given by Local Class Field Theory (see e.g. [Serre, 1963] or [Fesenko and
Vostokov, 1993]). In the general case, such a description is not yet known. But if we
restrict ourselves to local fields with finite residue class field the number of extensions
of a given degree and discriminant is finite. It is even possible to ask for a formula
that gives the number of extensions of a given degree, and for methods to compute
them. Krasner [1966] gives such a formula, using his famous lemma as a main tool.
Indeed, his proof is constructive. It is possible to adapt his methods to get a set of

polynomials defining all of these extensions.

Note that Serre [1978] computes the number of extensions using a different method
in the proof of his famous “mass formula” (which can also be proved by Krasner’s
method [Krasner, 1979]).

In chapter 3 we give a new proof of Krasner’s formula for the number of extensions of
a p-adic field of a given degree and discriminant. We use the formulae for the number

of extensions to compute a minimal set of polynomials that generate all extensions of



a p-adic field of degree p and give an algorithm for the computation of all extensions

of a given degree.

Some methods from the proof of the number of extensions of a given degree and
discriminant can also be used for the determination of a bound that gives a con-
siderably improved estimate of the complexity of polynomial factorization over local
fields.

The factorization of polynomials over local fields is closely related to the computa-
tion of integral bases of local and global fields and can be applied to the factorization
of ideals in global fields. Several polynomial factorization algorithms have been pub-
lished:

e The Round Four algorithm of Zassenhaus [Ford, 1978, 1987, Ford and Letard,
1994] was originally conceived as an algorithm for the computation of integral
bases of algebraic number fields and is fast in most cases. In some cases however

a branch of the algorithm with exponential complexity is needed.

e Chistov [1991] proved the existence of a polynomial-time algorithm for factoring

polynomials over local fields.

e The algorithm for factoring ideals of Buchmann and Lenstra described by Co-
hen [1993, section 6.2] can be used for factoring polynomials over a local field in

polynomial time. (However, it needs an integral basis as an input.)

e The algorithm by Montes [1999] is formulated as an algorithm for the decomposi-
tion of ideals over number fields and is based on ideas of Ore [1926]. He does not

provide a complexity analysis.

e The improved Round Four algorithm by Ford et al. [2000] is considerably faster
than the original Round Four algorithm. Formulated as an algorithm for factoring
a polynomial @(z) over Q,, it returns a local integral basis (in fact, a power
basis) for Q,[z]/¢(2)Q,[z] for each irreducible factor ¢(z) of @(z). The algorithm

terminates in polynomial time.

e Cantor and Gordon [2000] have developed an algorithm for deriving an irreducible
factor of a polynomial @(z) € k[z| of degree N over an extension k of degree
k over Q. In their talk at the fourth Algorithmic Number Theory Symposium
in July 2000 they announced that they had reduced the expected number of bit

2



operations to
O(N* ey, (disc )** log' ™ p*).

The algorithm presented chapter 2 has its origins in the Round Four algorithm. It
returns all irreducible factors ¢(z) of a polynomial @(z) over the valuation ring of a
local field k together with an integral basis for k[z]/¢(z)k[z]. If k is a finite extension
of Q, of degree k, our algorithm derives a complete factorization of a polynomial @(x)

of degree N with the expected number of bit operations being

O (N**epy(disc @) ' log'** p* + N><u,(disc ©)*+¢ log' = p*).

Parts of this thesis have been published in [Pauli and Roblot, 2001] and [Pauli, 2001].
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Chapter 1

Preliminaries

1.1 Local Fields

We recall definitions and fundamental results in the theory of local fields. More

detailed exposition can be found in [Fesenko and Vostokov, 1993] and [Hasse, 1963].
Definition 1.1.1. A function |- | from a field k into the nonnegative reals such that
(i) || =0 <= a=0,

(i) |B| = |el- |5,

(i) | + B8] < max{|el, ||}

is called a non-archimedean or ultrametric absolute value on k.

Definition 1.1.2. A function v from a field k into Q U {oo} such that

(i) v(o) =00 <= a=0,

(i) v(aB) = v(e) + v(B),

(iii) v(e + B) = min{v(w),v(B)}.

is said to be a (an exponential) valuation on k.

Note that if v is an exponential valuation on a field k and if r € R, 0 < r < 1, then

0 ifa=0
la| :=

r*(@)  otherwise

is a non-archimedian absolute value on k.



Example 1.1.3. Let p be a prime number. Every a € Q can be uniquely represented
by a = p™(r/s) with m,r € Z, s € N and p, r, s pairwise relatively prime. The map

—m

v, : @ — m is a exponential valuation on Q. The map |- |, : a — p~™ is a non-

archimedian absolute value on Q. We call v,(-) the p-adic exponential valuation and

| - | the p-adic absolute value.

Remark 1.1.4. The absolute value | - |, defined by

oo = a ifa>0
o= _ ifar <0

fulfills the weaker triangle inequality
(ili)" o+ B| < [af + (B8]

instead of the ultrametric inequality (iii). Absolute values which fulfill (iii)’ but not

(iii) are called archimedean absolute values.

Theorem 1.1.5 (Ostrowski). An absolute value on Q either coincides with (|-|s)"

for some r € R, or with (|- |,)" for some prime p and some r € |0, 1].
P

Example 1.1.6. Let k(¢) be the rational function field over k.
(i) For B(t),v(t) € k[t] with B(t) # 0 set deg(3/7) = deg(B) — deg(7). Then

Voo @) 1= { oo ifa(t)=0

deg v otherwise
defines a valuation on k(?).

(ii) Let 9(t) be a monic, irreducible polynomial in k[t]. Every a(t) € k(t) has

&gmthmez B(t),~(t) ek[]and
) =

ged((1), (1)) = 1, ged(4(£), 7(¢)) = 1, ¥(t) monic and ged(B(%),y(t) - The

map Uy : & — m is a valuation on k(z).

a unique representation «(t) = ()™

Definition 1.1.7. We call a field a local field if it is complete with respect to a

discrete (non-archimedean) absolute value.

Example 1.1.8. Let |- |, be the p-adic absolute value defined in example 1.1.3. The
completion of Q with respect to | - |, is denoted by Q.



Let k be a field with an exponential valuation v. Denote the completion of k by
k. The field k is a discrete valued field with exponential valuation v(lim; o o) :=

lim; o v () Where (o )nen is a Cauchy sequence. We usually denote ¥ by v as well.
Definition 1.1.9. Let k be a local field, with absolute value | - |. We call

Ok :={a€ek]||a <0}
the valuation ring of k. Ok is a local ring with maximal ideal

p:={ack]||a <0},
which is principal. We denote by 7 a generator of p. The element 7 is called a prime
element of k.
We write v, or v, for the exponential valuation on k which is normalized such that
V() = vg(m) = 1.
We call k := Oy/p the residue class field of k. For v € k we denote by v the class
v+pin k.

1.2 Extensions of local fields

Definition 1.2.1. Let k be a field. We call a polynomial p(z) € k[z] separable if
every irreducible factor of ¢(x) has simple roots over its splitting field. Otherwise

©(x) is called inseparable.

Let k be a local field and let ¢(x) € k[z] be a separable, monic, and irreducible
polynomial of degree n. We obtain an algebraic extension K of k by adjoining a root
a of p(z) to k:
K = k(o) = k[z]/p(x)klz].

We say K/k is an extension of degree [K : k| = n. Denote the roots of ¢(z) in an
algebraic closure k of k by a = a®, ..., a™. We call o) the I-th conjugate of c.
The field K is a vector space of dimension n over k, and the n-tuple (1,q,...,a" )
is a basis of K over k. Thus every element 5 € K has a unique representation § =
S, il with ; € k for 0 < i < n—1. The conjugates of 3 are S0 = 37 ', (a(l))i
for1 <i<n.

We define the norm N(B) of 8 by N(8) = [, 8Y.



Definition 1.2.2. Let K be an algebraic extension of k. We denote the group of
automorphisms of K by Aut(K). We call

Gal(K/k) := {0 € Aut(K) | o(a) = « for all « € k}

the Galois group of K/k.

If o(x) is a non-constant polynomial in k[z] and K is the splitting field of ¢(z) then
we call Gal(p) := Gal(K/k) the Galois group of ¢(x).

If K = k[z]/¢(x)k[z] is the splitting field of ¢(z) € k[z] we say that the extension
K/k is Galois.

Theorem 1.2.3. Let K be a finite algebraic extension of degree n of a local field k
with exponential valuation vy(-). Then there exists one and only one prolongation v,
of the exponential valuation v, to an exponential valuation v, : K — QU {oo} with
Uplk = vp. This prolongation v, is defined by v,(c) = v,(N(a))/n for a € K. The
field K is complete with respect to vp.

Let k be an algebraic closure of k. The prolongations of | - | and v, to k or any

intermediate field k will also be denoted by | - | and vy, respectively.

Definition 1.2.4. Let ¢(z) € k[z] be monic with ¢(z) = [[_,(z — &) where & € k.
We define disc () := [[,..(& — &)* = Hl#(_l)(n2—n)/2(§l — &)

If ¢(z) is irreducible and & is any root of ¢ (z) then disc (¢0) = N(¢'(£)).

Let K/k be an algebraic extension of degree n. Then Ok is a free Ox-module of

degree n. We call a basis of Ok over Oy an integral basis of K/k.

Definition 1.2.5. Let (Jy, . . ., 0,_1) be an integral basis of K/k. We call disc (K/k) :

det((5,(Cl))0<k<n_1,1<l<n)2 the discriminant of K/k.

Definition 1.2.6. Let K be a finite algebraic extension of k. We say K/k is unram-
ified if [K : k] = [K : k.

For every positive integer [ there exists a unique unramified extension of k of degree .
To find a polynomial generating this extension, we look at random monic polynomials
of degree [ over the residue field of k until we find an irreducible one, say ¢;(z). Then

any (monic) lift of this polynomial to k[x] will define K over k. Since easy estimates



give that the ratio of the number of monic irreducible polynomials over k to the
number of all monic polynomials of degree [ is about 1/[, this method is adequate

for the values of [ we will deal with in this thesis.

If K/k is an unramified extension given by a root of such a polynomial ¢;(x) then
vy(disc (¢1)) = vy(disc (K/k)) = 0.

Definition 1.2.7. Let K be an algebraic extension of k. We say K/k is totally
ramified if [K : k] = 1.

A polynomial ¢(z) = 2" + @u_12" ' + -+ + o with coefficients in the valuation
ring Ok of k is called an Eisenstein polynomial if vy(p;) > 1for 1 < j < n—1 and
V(o) = 1. It is well known that such polynomials are irreducible and define totally
ramified extensions. Furthermore, the exponential valuation of the discriminant of the
field generated by such a polynomial is exactly the exponential valuation discriminant
of the polynomial. Conversely, if K/k is a totally ramified extension of degree n, then
every prime element of K is a generating element over k and is a root of an Eisenstein
polynomial (see [Serre, 1963, Chap. I, §6]).

Let K be an extension of k. We can split this extension uniquely into a tower of
extensions K/Kr/k where K/K7 is totally ramified and K7 /k is unramified. In
section 2.4 we show how we can obtain an integral basis of Kr/k and K/K7 from a

defining polynomial of K/k.

Definition 1.2.8. Let K be a finite algebraic extension of degree n of a local field k.
We denote the maximal unramified subfield of K/k by K7. We call Kt the inertia
field of K/k, fx := [Kr : k| the inertia degree of K/k, and e/ := [K/Kr| the

ramification index of K/k.



— K=Kk(I, 1)

totally ramified extension of degree
eK/k = K /K, generated by a root IT
of an Eisenstein polynomial A, (x)

extension of degree .
n = ex/xfx/k KT - k(F)

unramified extension of degree fx/kx = fx./x
generated by a root I' of a monic polynomial ¢(z) with
¢(z) € k[z] irreducible

— k

Let p be the characteristic of the residue class field of k. We say K/k is tamely
ramified if p { ex k. Extensions K/k with p | ex i are called wildly ramified. Every
totally ramified extension K/k can be split into a tower K/Ko/k where K/Kj is

wildly ramified and Kg/k is tamely ramified. See section 3.5 for a proof.

If ¢(z) € k[z] is insepararable then disc (¢) = 0. If ¢(z) € k[z] is irreducible and
disc (¢) = 0 then ¢(z) is inseparable.

If k is a finite extension of Q, we call k a p-adic field. Setting e = ey /g, and f = fi/q,,

we have the following situation.

[ k — Qp(Ca 7T)

totally ramified extension of degree e
generated by a root w

of an Eisenstein polynomial
extension of degree ef

with inertia degree f, kT — Qp (C)

ramification index e . .
unramified extension of degree f

generated by a root ¢ of a
monic polynomial p(z) with
p(x) € Fp[z] irreducible

. Qp



1.3 Krasner’s Lemma

Proposition 1.3.1 (Krasner’s Lemma). Let k be a field complete with respect to

a non-archimedian absolute value |- | and let o, B € k with o separable over k. If
18— a| <o’ —qaf
for all conjugates o # a of a then a € k().

Proof. Let K/k(B) be the normal closure of k(«, 8)/k(8). Let 7 € Gal(K/k(p)).
Then

B=71(@)=|r(a=p)=18—-al <] —al

Therefore
la —7(a)| = o=+ —7(a))| < max{|a — 5], = 7(a)[} < |o’ - q

for all conjugates o’ of . This implies that 7 is the identity; thus k(«, 8) =k(g8). O

1.4 Complexity Analysis

In analyzing the complexity of algorithms, it is convenient and usually sufficiently
informative to specify computing times only up to order of magnitude, i.e., up to a

constant factor. The “big-O” notation lets us do this.

Definition 1.4.1. Let f : N — R and g : N — R. We write f(n) = O(g(n)) if there
is a constant C such that |f(n)|w < Cg(n) for alln € N.

As the algorithms we present are formulated over a general local field k, their com-
plexities are given in terms of arithmetic operations in k. We fix the following nota-

tion.
e We write P(n, f) for the number of steps required to factorize a polynomial of
degree n over an extension of the residue class field k of k of degree f.

e We denote by M(n) the number of ring operations needed for multiplying two
polynomials of degree at most n in k[z]. Schénhage and Strassen [1971] have

shown that M(n) = O(nlognloglogn).

10



e Let 3, v be in the algebraic closure k of k with [k(8) : k] < n and [k(7) : k] <n
for some n € N. We denote by C(n) the number of arithmetic operations in k
needed to compute an element § € k such that § is a primitive element of the

compositum k(3, 7).

e We denote by T(m,n) the number of ring operations required for triangularizing

a m X n matrix over the valuation ring Oy of k.

e We denote by R(m,n) the number of ring operations needed for computing the
resultant in  of two polynomials in k[t][x] of degree in = at most n and of degree in

t at most m. There exists an algorithm such that R(m,n) = O(nM(nm) log(nm)).

The extended euclidian algorithm for two polynomials of degree at most n is of

complexity O(M(n)logn).

See von zur Gathen and Gerhard [1999] and the references cited therein for the

relevant algorithms.

11



Chapter 2

Polynomial Factorization

We first present a root-finding algorithm, which we will use in an algorithm for the
computation of all totally ramified extensions of a p-adic field in section 3.8. We will
also use it in the construction of a minimal set of generating polynomials of degree p
in section 3.6 and in the construction of a set of independent generating polynomials

of degree p™ in section 3.7. This algorithm can also be found in Panayi [1995].

Secondly, we describe the polynomial factoring algorithm mentioned in the introduc-

tion.

Throughout this chapter we assume that the polynomial @(z) which is to be factored
is squarefree and separable. If &(z) is not squarefree this can be easily remedied by
dividing @ by gcd(®, ?'), where @'(x) is the formal derivative of @(z). In some cases
it is also possible to use the following much faster criterion to check whether @(z) is

squarefree.

Lemma 2.0.2. Let &(z) = cyz™ + cpo1z™ ™t + -+ 17 + ¢ € k[z] with vy(cn) <
vy(ci) and vy(co) < vyp(ci) fori € {0,...,N —1}. Then ®(z) is squarefree.

Proof. Without loss of generality we can assume vy(cy) = 0. Now v,(§) = vy(co)/N
for all roots ¢ € k of ®(x). The roots of the formal derivative & (z) of &(z) have
valuation at least vy, (ic;)/(N — i) for some ¢ € {1,...,N — 1}. But vy(co) < vp(c;)
and N> N —iforallie {1,...,N —1}. Thus v,(&) < v,(¢’) for all roots & of &(x)
and all roots & of @'(z). Therefore @(z) is squarefree. O

Unless restricted otherwise in this chapter k will be a local field as specified in
definition 1.1.7.

12



2.1 Root-Finding Algorithm

Lemma 2.1.1 (Hensel). Let k be a field complete with respect to a non-archimedian
absolute value |- |, with Oy its valuation ring and p its prime ideal. Let @(z) € Ox[z]
2

and assume there exists a € Oy satisfying |®(a)| < |®'(a)|*. Then ® has a root in

Ok congruent to o modulo p.

A constructive proof of this lemma can be found in [Cassels, 1986]. Panayi’s root-

finding algorithm relies on the following result.

Lemma 2.1.2. Let ¢(z) = cpa™ + -+ + ¢g € Oklz]. Denote the minimum of the
valuations of the coefficients of @(x) by vy(P) := min {vy(co), ..., vp(cn)} and define
&#(z) := D(z) /7" @), For a € Oy, denote its representative in the residue class field
k = Ok/p by o, and for B € Ox/p, denote a lift of 5 to Ok by B

a) If a is a zero of ®(x) then a is a zero of P(x).

b) a is a zero of P(xm + B) if and only if ar + B is a zero of b(x).

c) a is a zero of D(x) if and only if « is a zero of ¥ (z).

d) Let B be a zero of ®(x) and let Y(zx) := P(zm + B) Then deg(¢#) < deg(P7).
e) If deg(®*) = 0 then ®(z) has no zero in O.

f)

(
g) If &*(z) = (z — B)™h(x) where ged((z — B), h(x)) =1 and if (x) = B(am + )
then deg(¢#) <m

If deg(®*) = 1 then ®(x) has a zero in O.

Proof. The statements a) to c) are obvious.

d) Let d = deg(®*). Then vy(cq) < vy(c,) for all v < d and vy(ca) < vy(c,) for all
v > d. Now ¢ = bz +- - ~+bg with b; = 37 (1) ¢;m' 317t Because (1) = 1 we have
p(ba) = vp(cq)+d and vy(by) > vy(ca)+v for all v > d. Hence, deg(yp#) < deg(P#).

e) Clear from a), b), and c).

f) We denote the coefficients of &#(z) by c. Let 8 be a root of &#(x). Since
deg(®#) = 1, vy(cf’) = 0 and v,(c#) > 1 for v > 1. So (P#'(B) # 0 mod p and
&#(B) = 0 mod p. Thus &#(z) has a root by lemma 2.1.1, and by ¢) &(z) has a

root as well.
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g) Without loss of generality, we may assume that &(x) = &¥(z). Consider the

Taylor expansion

~ " PO () . .
d(nx + f) = Z d z'(ﬁ) 'zt

=0

As d5( )f (z — B)™h(x), we have v,(¢™ (3 )/m') = 0. Also v, (9D (3 ) i) =0 >
vp (D™ (B)/ml)7™ = m for ¢ > m. Hence deg(y)#) < m.
U

Assume @(z) has a root S modulo p and define two sequences (?,(x)), and (4,), in
the following way:

[} @0(37) = Q#(.'L'),

L 50 = Ba

e ®,.1(z) := &% (x7 + B,) where 3 is a root of % (z),

®0, 1 := Blﬂr”“ + 6, where 3, is a zero of ﬁ(x) if there are any.

At each step, one can find such a root if indeed @(z) has a root (in Ok) congruent to
B modulo p and ¢, is congruent to this root modulo increasing powers of p. At some
point, one of the following cases must happen:

e deg(®,) < 1 and one uses 2.1.2 e) or f) to conclude;

° ﬁ has no roots and thus 6, ; is not an approximation of a root of ®(x);

o v > vy(disc (®)) and then lemma 2.1.3 below tells us that lemma 2.1.2 e) or f)

applies.

While constructing this sequence it may happen that @,(z) has more than one root.
In this case we split the sequence and consider one sequence for each root. Lemma
2.1.2 g) tells that there are never more than deg(®) candidate roots. Notice that if
the conditions of lemma 2.1.2 f) or lemma 2.1.3 are satisfied, the construction used in
the proof of lemma 2.1.1 can be used to compute an arbitrarily close approximation

of the root faster than with the root-finding algorithm.

Lemma 2.1.3. If v > vy(disc (®)), then deg(®,) <1
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Proof. Assume deg(®,) > 2. Since @,(z)

considering the Taylor expansion

&% (x) by construction, it follows by

"L o0 (6,)

7T(V+1)i$i
2!

Dy41(z) = B(n"" 'z +6,)

i=0
that &(d,) and @'(J,)7”"" must have a v,-valuation greater than or equal to the
valuation of 2"+, So v,(®(d,)) > 2(v + 1) and v,(¥'(6,)) > v + 1. In particular,
@(z) has (at least) a double root modulo p**. But, the discriminant of @(z) modulo

p”*! is nonzero by hypothesis, thus this is impossible. So deg(f,) < 2. O]

The following algorithm returns the number of zeroes of a polynomial f over a local
field k. We use the notation from lemma 2.1.2.

Algorithm 2.1.4 (Root Finding).
Input: A local field k with prime element 7, a polynomial @(z) € k[z|, and a

desired precision N
Output: A set G of approximations of the roots of @(z) over k

e Set C « {(9%(x),0,0)}.
e Set G+ {}.
e While C is not empty:
e For all (¢(z),6,s) in C:
° C = C\{(¢(x),6,5)}.
e R« {B|Bisaroot of ¢(x) in k }.
e For all #in R:
Set ¢ (z) + Y(rr + B)
Replace ¢(x) + 9% (z).
If degy) =1 then
e derive an approximation § of a root of @(z) using lemma 2.1.1.
e G+ GU{d}.
If deg® > 1 then
o C«+— CU{(W(x),0+7°B,s+1)}.
e Return G.

Corollary 2.1.5. Let k be a local field and let &(x) € k[z] be a polynomial of degree
N. Algorithm 2.1.4 returns approzimations to all roots of a polynomial @(z) € k[z]
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i at most
O(Nuy(disc (@) - (P(N) + NM(N)))

operations in k.

Proof. At any time there are no more than N = deg® candidate roots. By lemma
2.1.3 the algorithm terminates after at most v,(disc @) iterations. In each iteration

of the inner loop a polynomial of degree at most N is factored over the residue class

-~

field of k and ¥ (wz+ ) is evaluated. This can be done in P(V), respectively NM(N),

operations in k. O

2.2 Polynomial Factorization

Let @(x) be a monic, separable, squarefree polynomial of degree N in Oy[z]. In order
to find a proper factorization of @(z) or to prove its irreducibility, we construct a
polynomial p(z) € k[x] with deg ¢ less than or equal to the degree of every irreducible
factor of @(z). The polynomial ¢(z) is iteratively modified such a way that |p(§)|
decreases strictly for all roots £ € k of &(z).

In section 2.3 we describe how a proper factorization of ®@(z) can be derived if
(&) # |¢(&;)] for some roots & and &; of @(z). In section 2.4 we describe how
an integral basis of k[x]/®(z)k[z] over k can be obtained from the data computed in
the algorithm. In section 2.5 we show that ®(z) is irreducible if |o(&)|N < |disc ®|?
for some root & of @(x). In section 2.6 we present an algorithm that returns a proper
factorization of @(z) over Oy if one exists or an integral basis of k[z]/®(x)k[x] over

k otherwise. In section 2.8 we analyse the complexity of the algorithm.

2.3 Reducibility

Hensel lifting gives a very efficient method for approximating factors of a polynomial
over a local field if the polynomial has at least two relatively prime factors over the

residue class field.

Proposition 2.3.1 (Quadratic Hensel Lifting). Let R be a commutative ring
with 1, let b be an ideal of R, and let ¥(z), ¥ o(z), Poo(z) be monic, non-constant
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polynomials in R[x] such that
U(z) = ¥ o(z)¥0(x) mod b.
Assume there exist v10(x), y2,0(x) € R[z] and yo(x) € blx] with
M0(2)P0(x) + 72,0(2)P20(x) =1+ Y0,0()-
Then for every m € N there ezist ¥y p,(x), Yom(x) satisfying
¥(z) = ¥y (1) Wy (z) mod 62"

and
U (x) = ¥ 0(z) mod b,

!pg’m(l') = %,O(x) mod b.

Also there exist ¥1,m(x), Yo,m(x) € Rlz] and Yom(z) € b[z| with

V,m(T)P1,m (%) + Yom(T)Po,m(T) = 1+ Yom (7).

For a proof see Pohst and Zassenhaus [1989].

We present two criteria which, if they are fulfilled, allow us to apply Hensel lifting
to the problem of factoring @(x).

Definition 2.3.2. Let &(z) = [['L,(z — &) € Oy[z]. For 9(z) € k[z] we define

=1
N

Xo () = [ [(y — 9(&)) = res.(®(z),y — V().

=1

Definition 2.3.3. Let 9(x) € k[z] with xy(y) = yV + iy 1+ -+ ey € Okly].

We say () passes the Hensel test if x (y) = vy(y)® for some s > 1, where v,(y) is

monic and irreducible in k[y].

We define further v, (J) := min U (C’)
1<iKN ¢

We say the polynomial ¥(x) passes the Newton test if w = v, (19).

Note that v, (9(&1)) = - - - = vp(F(€n)) = vy(cn)/N if 9(z) passes the Newton test.
Proposition 2.3.4. Let y(z) € k[z] with x,(y) € Oklyl. If v(z) fails the Hensel test
then @(x) is reducible in Ox[z].
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Proof. As y(x) fails the Hensel test, X, (y) has at least two irreducible factors. Hensel’s
lemma gives relatively prime monic polynomials x;(y) and x2(y) in Ok[y] with

x1(¥)x2(y) = x(y). Reordering the roots of ®(x) if necessary, we may write

x1(y) = (y— (&) (y — (&) and x2(y) = (v — v(&r41)) -~ (¥ — v(Ew)),

where 1 < r < N. It follows that

P(x) = ged(2(2), x1(7(2))) - ged(2(2), x2(7(2)))
is a proper factorization of @(x). O

Corollary 2.3.5. Let 9(x) € k[z] with x9(y) =y~ + iy ' +---+cn € Oly]. If
Y(z) fails the Newton test then ®(x) is reducible in Oy[x].

Proof. 1f 9(x) fails the Newton test we have v; (V) = r/s < vy(cy)/N. Setting y(z) :=
Iz)® /7" we get

min{vy(y(&1)), - - vp(Y(€n))} = 0 < max{vy (7(£1)), - - -, vp(v(€n)) }-

Consequently ~y(x) fails the Hensel test and it follows from proposition 2.3.4 that
&(z) is reducible. O

In general it is not possible to compute exactly the greatest common divisor of two
polynomials over a local field. The following result from Ford and Letard [1994] (also
see Ford et al. [2000]) provides a method for approximating the greatest common

divisor to any desired precision.

The Sylvester matriz Sew of the polynomials &(z) = coz™ + -+ + ¢y and ¥(z) =
boz™ + - - + by is the (M + N) x (M + N) matrix

(e

0 bo -+ by
co - CN O

\0 Co CN)

Proposition 2.3.6 (Ford). Let &(z) € Ox[z] be monic. Let relatively prime poly-

nomials ¥y (x) and Yo(z) in Oklz] and 1o € N be given, such that
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P(z) | Ui (z)Wa(x) and p™ = (i () Okla] + Yo(x) Ok[x]) N Ok.

Choose m € N, m > rg. For j =1, 2 let Sp,; be the Sylvester matriz of (z) and
V;(z). Let n"id;(x) with ®;(x) monic, ; € N, be the polynomial given by the last
non-zero row of the matriz obtained by row reduction of Sew, modulo p™. Then
®;(z) = ged (®(x), ¥;(x)) mod p™ 7.
Proof. Define
Gi(z) == ged(P(z), ¥ (
Ga(z) := ged (D(z), Ua(x)), Hao(z) :

&
~
~
=
&
—
1
5 5
—_ o~
8 8
~—
~
Q @
[\ —
—_ o~
8 8
=

so that
P(z) = G1(z)Ga(x),

and let
psl(’)k = (GQ(x)(’)k[x] + Hl(.T Ok[ﬁ]) N Ok,

p*20x = (G1(2)Ok[z] + Hz(2)Ok[z]) N Ok.

Because ¥;(z) = G1(z)H:(z) and W (z) = Go(x)Hz(x) we have s; < 1 and so < 7.

)
)

For j = 1, 2 let Sgy; be the Sylvester matrix of @ and ¥;. It is clear that row-
reduction of Sg g, over k gives the coefficients of G;(x) in its last non-zero row. It
follows (because the rank is invariant) that row-reduction of Sg g, over Oy gives the

coefficients of p’"G;(z) in its last non-zero row, for some r; > 0. Since
P Gj(z) € () Ok[z] + ¥(2)Oxlz]

it follows that r; < s;, and since

d(x)
Gj(z)

it follows that s; < r;; hence r; = s;.

¥ («)

pY €
Gj(z)

Ok [.T] +

Ok [Z’]

If m > rq then row-reduction of Sg g, over Oy performed modulo p™ gives in its last

non-zero row the coefficients of p%®,(z), with @;(z) in Ok[z], @,;(z) monic, and
Pj(z) = Gj(x) (mod p™ % Ola]).

It follows that
@1 (z) = ged P(x), ¥1(x) mod 7™ "0 Oy[x],

Dy(z) = ged P(x), Yo(z) mod 7™ 0Ok [z].
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Remark 2.3.7. In the construction of @;(z) and P,(z) it is sufficient to have ap-

proximations to @(z), ¥;(z), and Yy(x) that are correct modulo p™.

Remark 2.3.8. Let y(z) be a polynomial in k[z] such that xi1(y)x2(y) = x,(y) €
Oxkly] where ged(x, (¥), x,(y)) = 1. There exist a1 (y), a2(y) € Ok[y] with

o (Y)x,(y) + as(y)x,(y) = 1.

Because the index of k[z]/®(z)k[z] in its maximal order is at most p?, where d =
|vy(disc®)/2], and

mon(7(2))mx1 (v(2)) + a2 (v(2)) 7 x2 (v(2)) = 7 mod p***,

it follows that 7o < 2d < v,(disc P).

Both criteria for finding a proper factorization of @(x) need a factorization of the
polynomial over the residue class field before Hensel lifting can be applied. If the
residue class field k is finite we can use the algorithms of Berlekamp [1970], Cantor

and Zassenhaus [1981], or one of their many improvements.

If k is the completion of a function field over a number field then polynomials over
k can be factored using the algorithms for factoring polynomials over number fields
by Trager [1976], Pohst [1999], Roblot [2000], or Fieker and Friedrichs [2000].

We will see that it is convenient to factor the polynomial @(x) over an unramified
extension k of k. Then the norms of the factors of &(x) over k can be used to derive
a factorization of @(x) over k. For more on the norm of a polynomial see Pohst and
Zassenhaus [1989, section 5.4].

Definition 2.3.9. Let k be an algebraic extension of k of degree n. Let ¥(z) €
k[z] and 99 (z) € k@[z] (1 < j < n) be the corresponding polynomials over the
conjugate fields obtained by applying conjugation to the coefficients of ¥(x) only.
Then the norm of ¥(z) is defined by N, (9) == [I}_, 99 ().

Remark 2.3.10. Note that Ng , (J(z)) € k[z] and that

Nij(91(2)d2(2)) = Ny (91(2))Nig 5 (V2(2))

for all ¥, (z), ¥2(x) € ﬂ[m]
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Remark 2.3.11. Let v(y) € Okly] be irreducible and let k = Ox[y]/v(y)Oxly]-
Let o(z) = > 1 ,c¢i(y)z™ be a polynomial in k[z]. Denote by C; a lift of ¢; from
Oxly]/v(y)Oxly] to Owly]. Then Ng , (p(2)) = res, (v(y), Sy Cily)z™).

2.4 Two-Element Certificates and Integral Bases

For a polynomial J(z) € k[z] the values Ey and Fy defined below give lower bounds
for the ramification indices and the inertia degrees respectively of the extensions k(&)
for all roots & of @(x).

Definition 2.4.1. Let J(x) € k[z], with xs(y) € Ok[y], such that 9(z) passes the
Hensel and Newton tests. We define vy(y) to be an arbitrary monic polynomial in
Okly], with v,(y) irreducible in k[y], such that x  (y) = v,(y)* for some s > 1. We set

Fy := degvy. We define Ey to be the (positive) denominator of the rational number

*

5 (9) in lowest terms.

v

Definition 2.4.2. Let &(z) be a monic polynomial in Oy[z]. Let £ be a root of @(x)
Let I'(z) € k[z] with xr(y) € Okly] and II(z) € k(I'(£))[z] with xz(y) € Owre) |yl
such that I'(z) passes the Hensel test and I7(x) passes the Newton test. We call the
pair (I'(z), II(z)) a two-element certificate for ®(x) if v;(Il) = 1/E; and FrEp =
deg .

Proposition 2.4.3. Let &(x) be a monic polynomial in Ox[z]. If a two-element cer-
tificate (I'(x), I (x)) exists for ®(x) then ®(x) is irreducible over k. Moreover an
integral basis of the extension K/k generated by a root & of ®(x) is given by the
elements I'(E) T (€)Y with0 < i< Fr—1and0< j < Epy — 1.

Proof. The polynomial @(z) is irreducible because every root of @ generates an ex-
tension of degree FrE = deg @ over k. Denote the inertia field of K/k by K. Let
7 be a root of vp(z) such that v = I'(§). Then Kr = K(v) and Ok, /x = Ok[7]. As
vi(IT) = 1/Eyr we have Ok ic = O, [T (€)] = Ok[v, IT(£)]. The elements y*IT(£)?
with 0 <4 < Fr —1 and 0 € j < E — 1 form an integral basis of K/k. Because
I'(€) =~ mod I1(£) the elements I" ()" [T1(£)? with0 < i < Fr—1land0< j < Ep—1

are an integral basis of K/k as well. O
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Let @(z) € Ok[z] be irreducible and let E be the ramification index and F' the inertia
degree of k[z]/®(z)k[z]. Set ko := k. Assume we are given a tower of unramified

extensions

kr = krfl[yr]/y”rr—lkrfl[yr]

k() = k

with ~;(z) € k;[z], such that k, is isomorphic to the inertia field of k[z]/®(x)k|z].
Denote by 7;(z) a lift of v;(x) to k[y1,...,y;][z] and by & a root of @(z). Define a
sequence 6;(z) € k[z] by do(z) := To(x) and &(x) := F(6o(z),...,d-1(z))(z) for
1 <i < r. Then the inertia field of k(6(£), . .., 8;(£)) is isomorphic to k;.

Let I'(z) € k[z] be such that I'(£) is a primitive element of Er over k. Then Fr = F.

Assume that a polynomial ¢ (z) € k,[z] with x,(y) € O, ly] and v;(v) = 1/E is
known. Denote by 9(z) a lift of 1(z) to K[y, . .., v:][z] and set

I(z) =v¥(6(z),...,6())(z)
Then (I'(z),II(x)) is a two-element certificate for @(zx).

If the residue class field k of k is finite the following lemma can be used to find a

primitive element of ET.

Lemma 2.4.4. Let T, be the field with q elements. Let 3 and vy be elements of an al-
gebraic closure of ;. Let Fg := [F,(B) : F|, F, := [F,(7) : ]| and F :=lem(Fg, F,).
Let § € F;(B,7) be randomly chosen. Then the probability that F,(8) = ¥, (B, 7) is at
least 1/2.

Proof. The number of elements of If,» generating a proper subfield of I, is at most

> " < (logy, F)g"'”.

| prime
I<F,l|F

Therefore the probability that a randomly chosen element of F,» belongs to a proper
subfield of F,r is at most
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(logy F)g"?  log, F < log, F’ o 1
0 T g S o N 0

For the case that k is the completion of a function field over a number field, the
residue class field k is a number field. Cohen [1999, section 2.1] presents an algorithm

for computing a primitive element of the compositum of two number fields.

2.5 Irreducibility

The following proposition gives an upper bound for the number of steps needed in our
algorithm either to derive a proper factorization of @(z) or to produce a two-element

certificate of the irreducibility of &(z).

Proposition 2.5.1. Let &q,...,&N, a1,...,q, be elements of an algebraic closure of

k and assume the following hypotheses hold.

e P(x) := vazl(x — &) is a squarefree polynomial in O[z].
e o(z) =TI (z — ;) is a polynomial in k[x].
o |o(&) N < |disc®|?* for 1 < j< N.

e The degree of any irreducible factor of ®(x) is greater than or equal to n.

Then N =n and @(x) is irreducible over k.
To prove of this proposition we need a few lemmas.

Lemma 2.5.2. Let &(z) = Hj.vzl(ac—é“j) € k[z]. Let o be an element of the algebraic
closure of k and assume E is chosen among the roots of ®(x) such that |a — §| i8

manimal. Then

[2(a)| = Hmax{la — &, [E- &}

Proof. We have |®(a)| = [, la — & and |a — &| = |a — £+ € — &| < max{|o —
€, 1€ &I} 1 o — €[ <€ &] then o — & = €~ &, and if o — €] > € — &| then
la—&| =€ — al. O

Lemma 2.5.3. Assume the hypotheses of proposition 2.5.1 hold. Then ¢(x) belongs

to Oklx] and ¢(z) is irreducible over k. Furthermore there ezist a root & of ®(x) and
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a root « of p(x) such that k(&) = k(«), so that the minimal polynomial of & over k

is an irreducible factor of @(x) of degree n.

Proof. Let ®;(x) = va;l(x — &), 1 < i < m, denote the m irreducible factors of
@(z). Let G; be the Galois group of the extension k[&; 1, ..., & n;]/k. Let A®; be the
minimal distance between two distinct zeroes of @;(x). Let E,J denote a root of @;(x)
such that \aj - E”\ is minimal. Assume that |o; — E”| > AP;. Then for 1 <i<m

and 1 < j < n, using lemma 2.5.2, we get
N; N; L
@) = []ley— &l = [[max{la; — &l 15 — &inl}
k=1 k=1

N;
> H max{AP;, |&; — & x|}

k=1
= A@Z H maX{A@, ‘é-z,] — = A@z H ‘51,] _é-i,k‘-
&k # i &k #Eij

Without loss of generality, we may assume that A®; = |§;1 — & 2|. Choose 01, ...,
Oin € G; so that f;’”‘ll, ) ..,60”‘” are distinct and choose 7;1,...,7;, € G; so that
5?11, o ,§ “" are distinct. Then A®; = \fa” — U”| for 1 < j < nand |§” &ixl =

\57” - T”\ for1<j<nand1l<k< N, Hence

[Tiz0) > TI(a2 IT &~ 6ul)
=1 7=l ik #Eij
= (H - € )(H IT 1€y -¢ ) > |disc ;2.
‘7:1 )= lgz,k:fé‘gz,]
Now
N
max o)l > [[le@) = H@ o) = HH@ el
k=1 i=1 j=1
> H\dise@ﬁ > |disc ®|*.
i=1
Thus if max}_, [p(&)|N < |disc ®|? then there exist 7, j with1 <i<mand1<j<n

such that o, — fw| < A®;. It follows from Krasner’s lemma (proposmon 1.3.1) that
k(Z”) C k(o). As degyp = n < deg®; = N; we get k(g,]) = k(«;). Therefore

N; = n, and &;(z), which is the minimal polynomial of E” over k, is an irreducible
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factor of &(z) of degree n. Because &(z) € Okla] and |a; —&; ;| < AP; it follows that
() € Oklal]. O

Lemma 2.5.4. Assume the hypotheses of proposition 2.5.1 hold. Then k(&) = k(«)
for every root £ of ®(x) and every root o of p(x).

Proof. The result is an immediate consequence of lemma 2.5.3 if n = N, so we
assume n < N. Let @(z) := [[_,(x — &) denote the irreducible factor of &(z)
given by lemma 2.5.3 and write ®y(z) = H;V:_ln(x — &) = O(z)/P1(x). Let B =
max, [¢(§;)|. By lemma 2.5.3 ¢(z) is an irreducible polynomial in Oy[z]; because

n n n N—-n
[T1®1(e) =[]l < B and []I®s(i)l = ] le(€as) < BY ™
i=1 j=1 i=1 j=1

it follows that |®;(a)| < B and |[®y(a)| < BOY~™/™ for each root a of p(z). We have

n N—n
disc @1 | |res(®1, Py)| = H(H €1 — &1 H €1 — Eay )
=1 j=1

JFi

Let G be the Galois group of the extension k[ 1, ..., & »]/k = k[a, ..., a,]/k. For
1 < i< nleta; be aroot of p(x) that is closest to &4, and for 1 < j < n let g;; be
a member of G such that &7 = & ;. Then

@ — &1 <o — €| = o — ff”ﬂ = |a; — &4

N-—-n
) (H €1 — i + o — o )
j=1
N—n
[ [ max{l¢r; — @il [ — & ) (H max {|&1,; — ail, | — &a
J#i j=1

N—n
& - m) (H max {[€1; — @, | — 52,j|}).
7j=1

J#

for 1 < 7 < n. Thus

Ai =

N-—n
) <H &1, — o

J=1

&1 — &1

J#i
G — i+ — &y
J#

(1
(I
( )
(

If |1, — | > | —& | for some j then A; < |D1(qy)| < B, and if |§,—a;| < | —&
for all j then 4; < H;V;l" & — & j| = |Po(cy)| < BN=™/" < B. Hence
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BY < |disc®|* = |disc ®;|*|res(®1, Py)|*|disc Po|* < B"|disc Py |*.

It follows that BN™" < |disc ®,|?, and also that N —n > n (otherwise @(x) would
have an irreducible factor of degree less than n). Repeatedly applying lemma 2.5.3
in this manner we decompose @(z) as a product of irreducible polynomials each of

degree n, and the result follows. O

Proof of proposition 2.5.1. By lemma 2.5.4 N must be a multiple of n. If n = N we
are done. But if n < N then @(z) is the product of N/n irreducible polynomials, say
®1(x),...,Pn/m(x), each of degree n. For 1 < r < N/n let @,(z) = [[_,(z — &),
and for 1 < 7 < n let a,; denote a root of p(x) that is closest to &, ;. Arguing as in

the proof of lemma 2.5.4 we have

A = <H &ri — &rj ) (H H &ri — &s,j )
j#i s#r j=1
< ([max = vl s = €03 ) (TT T 60 = )
VED s#r j=1
< <H ‘&r,i - fr,j ) (H H max {|£’r,i - &r,i ) |ar,i - fs,j })
VE=D s#r j=1
< B,
hence
N/n n
disc®| = J][[Ari < BY < |disc®]?,
r=1i=1
which since disc @ € O is impossible. O

2.6 Polynomial Factorization Algorithm

The following algorithm constructs a polynomial ¢(z) as described in section 2.2.
We will use proposition 2.5.1 to show that the algorithm terminates; to do this we
need to ensure that deg ¢ is less than or equal to the degree of any irreducible factor
of @(x). As the algorithm progresses we accumulate polynomials ¢;(z) with E,, > 1
and use these for altering ¢(z) so that the valuation of ¢(x) evaluated at the roots
of &(z) increases (see remarks 2.6.7 and 2.6.3). When we find an element vy with

F, > 1 we ensure the condition on the degree of ¢(z) by determining an unramified
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extension k of k with k C k(¢) for every root £ of @(z), finding a factor &(z) of &(x)
with deg(®) = deg(®) /F., over k, then factoring @(z) itself over k. As we collect
more information about the fields generated by the roots of @(z), we enlarge the

unramified extension k.

Algorithm 2.6.1 (Polynomial Factorization).
Input:  a monic, separable, squarefree polynomial @(z) over a local field k
Output: a proper factorization of @(z) if one exists,
a two-element certificate for @(x) otherwise
e Initialize p(z) < z, 5(33) — P(z), k«k E+ 1, P« {}
e Repeat:

a) If p(z) fails the Newton test then: [ remark 2.6.2 |
e Return a proper factorization of @(z).

b) If E, t E then [increase EI: [ remark 2.6.3 |
e P+ PU{yp}, S+ lem(E,E,)/E, E + SE, p(z) < o(z)5.
o If E = deg ® then: [ remark 2.6.4 ]

e Return a two-element certificate for @(z).

c¢) Find ¢(x) = w1 (x) oo ()2 - - - ok (x)% with: [ remark 2.6.7 |
vy (V) = vy (), wi(r) € P, co €Z, c; €N (i > 0), degyp < E.

d) Set y(z) < p(z)y (z). [ remark 2.6.5 ]

e) If y(x) fails the Hensel test then: [ remark 2.6.2 |
e Return a proper factorization of @(z).

f) If EF, = deg @ then: [ remark 2.6.4 ]
e Return a two-element certificate for @(x).

g) If F, > 1 then [extend the ground field]: [ remark 2.6.6 ]

o Replace k « k[y]/v, (y)k[y].
e Derive a proper factorization ®(z) = ®;(z) - - - &, (z) of &(z) over k.
e Replace &(z) < ;(z), with deg®; = (deg 5) /F,.
h) Find § € Op with § = y(§) mod 7Oz for all roots £ of &(x).
i) Replace p(z) « ¢(z) — 0y (z). [ remark 2.6.3 |

Remark 2.6.2. A proper factorization of ®(z) over k can be derived by applying
proposition 2.3.4 to ®(z) and ¢(z) or corollary 2.3.5 to @(z) and ~(z). From this
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factorization of ®(z) over k a factorization of @(z) over k can be obtained using
remark 2.3.10.

Remark 2.6.3. Replacing ¢(x) by ¢(z)° ensures that deg ¢ = E when E is replaced
by SE, and as degdy < E the degree of ¢(z) remains equal to F when ¢(z) is
replaced by ¢(z) — d1(z). As p(z) = z initially, ¢(z) remains monic.

Remark 2.6.4. If £ = deg(l5 then every root ¢ of (15( ) generates an extension
of degree deg@, and hence @(ac) is irreducible. It follows from proposition 2.5.1
that degp = E = deg® if deg® - vy (p) > 2vy(disc®). As v;(p) increases strictly
algorithm 2.6.1 terminates. There exist ¢ € Z and c¢y,...,¢s € N such that
I (z) = pi() - ps(x)® with @;(z) € P and v;(II) = 1/E. Following section

2.4 we construct a two-element certificate of @(z).

Remark 2.6.5. In practice we find {ﬂ\( ) € E[x] such that J(x)w(x) = 1 mod &(z)
and set y(z) < o(z)y ( )- Note that v;(v) = 0. As only the values of the polynomials

v(z) and ¢( ) at the roots of ®(z) are of concern, these polynomials can be reduced
modulo @(x)

Remark 2.6.6. As F, > 1, and as 5(3:) and therefore v, (y) are separable, v, (y)
must have at least two distinct factors over E[y] Jvy(y)k )A[y] at least one of which is

linear. Proposition 2.3.4 gives a factorization of &(z) over [y] [y )E[y]

Remark 2.6.7. Let the elements in P be numbered so that the increase of E by
the factor S; due to ¢;(x) is followed by the increase of E by the factor S;;; due to
@j+1(7). As E, | E there is an element 1(x) = 70, (1) - - - g ()% with v;(¥) =

vy (¢). By construction of the ¢;(z) we have the relations
«( S; b; b;
Uy (Soj]) ( )t - ‘ng )

with b; € Z and b;; € N; hence we can reduce the exponents ci,...,c; so that
0<c¢j<Sjforl <y <k Weget

degy < (Sl—1)+(SQ—1)Sl+(53—1)5152+"'+(5k—1)51'--Sk_1
(148 -8) = E—1.

The integers cq, c1, ..., cx can be computed using the following algorithm.
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Algorithm 2.6.8.
Input: A list of pairs (ai/bi, Si), 1 <@ <k, with ag, b;, S; € N, ged(a;, b;) =1
and lem(by, ..., b;_1)-S; = lem(by, ..., b;) for all 1 < 7 < k, and a rational
number w = t/u where ged(t, u) =1 and u < Hle S;
Output: Positive integers cg,...,cx With cg € Z, 0 < ¢; < §; for 1 <7 < k, and
co + Zle ¢ - a;/b; = w.
e Set T+ [, S:.
e For ¢ from 1 to k:
e Replace T' <+ T'/S; and set d < b;/ ged(b;, T).
eSet r <+ T -d-a;/b; and s < w-e-d.
e Find ¢; so that ¢; -7 = smod d with 0 < = < d.
e Replace w < w —¢; - a;/b;.
e Set ¢y + w.

e Return cy, . .., cg.

2.7 Examples

In the first example we show the irreducibility of a polynomial &(z) whose roots
generate totally ramified extensions of ;. We need to increase the ramification index
bound E twice to show the irreducibility of @(x). From the polynomials collected in

the set P we compile a certificate for the irreducibility of &(z).

In the second example a polynomial ¥(z) is factored over Q3. In the first iteration
of the algorithm we discover that all extensions of Q3 generated by roots of ¥(x)
contain an unramified extension E/ Q. We derive a factorization of ¥(x) over k from

which we obtain a factorization of ¥(x) over Qs.

In the third example we factor a polynomial over the field Fs(()).
Example 2.7.1. Let k = and
&(z) = 2° + 3-22* + 2°2° + 3-2%2% — 320 + 33.23,

Initially we set P := { } and ¢(z) := z, hence x,(y) = @(y). It follows that ¢(x)
passes the Hensel and Newton tests. We find v3(¢) = 1/2, thus E, = 2, and we set
E =2, ¢1(x) := ¢(zx) and replace P by {¢1(z)}.
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We replace ¢(z) by 2?; thus ¢(z) = 2 and v(x) = ¢(z)1(z) = 27 '2? with Xv(y) =
y® — y* + y? — 1. Hence v, (y) = y + 1.

We replace ¢(z) by o(z) — (=1)(z) = 22 + 2. As
Xe(y) = y° — 2°9° +9-2""y* — 3.2'5y + 3.2

the polynomial ¢(x) passes the Hensel and Newton tests. We have v3(p) = 8/3 and
E, = 3. We replace E by lem(E, E,) = 6, we set @o(z) := ¢(z), and we replace P
by {¢1(z), @2(2)}-

The ramification index of an extensions of Q, generated by a root of @(x) must be at
least F' = 6. As the degree of &(z) is six, ®(x) is irreducible. The irreducibility of @(x)
is certified by the two-element certificate (1, I1(x)) with IT(x) := 273p(z)pa(z) =
27323 4+ 272z, Note that v}(IT) = 1/6.

Example 2.7.2. Let k = Q5 and
U(z) = 2% + 42° + 2-32* 4 T2? + 3%z + 13.

We derive a factorization of ¥(z) over Q3 to a precision of twelve 3-adic digits.

Initially we set ¢(z) := z. Then x,(y) = ¥(y) and v,(y) = y* + 1. Thus we continue
our computation over the extended ground field k := k[y] /v,(y)k[y]. Let a be a

primitive element of k. Hensel lifting gives the factors
@(x) = x* +435740ax® + (—33734-3%a — 59774-3) 2>
+ (—89882cx + 8443-3?%)x + (—5132-3%c + 520585)
and its conjugate
z* — 43574003 + (33743-3%a — 59774-3)x?
+ (89882 + 8443-3%)x + (5132-3%a + 520585)
of W over k. We now factorize ¥(z) over k.

Over k the polynomial ¢(z) = z has characteristic polynomial Xo(y) = ¥ (y). Hence
¢(z) passes the Hensel and Newton tests and v,(y) = y + 2.

Thus ¢(z) = 1, v(z) = ¢1(x), and § = —2a. Replacing ¢(z) by ¢(x)—0¢(z) = z+2a.

we get
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Xo(y) = y* + (145244-30)y® + (—33734-3%a — 24679-32)y>
+ (—116638-3a + 50654-32)y + (53869- 32 — 33559-32);

thus ¢(z) fails the Newton test. Note that the valuations of the roots of x,(y) are
1/3 and 1. The polynomial 9(x) := ¢(z)*/3 with
xo(y) = y* + (—155281-3c + 16838-32)y> + (—3793- 3% + 60782-3)y2
+ (2770660 + 9565-32)y + (8165-32a — 8350)

fails the Hensel test. Hensel lifting gives the factors

Xo,1(y) — (4151-3% + 57679-32),

=Y
x0.2(y) =y + (—142828-3a + 5156-3%)y? + (—30373-3%a + 150737-3)y
+ (—520028c — 17123-3?)

of xs(y). We obtain the factors

~ ~

Uy (z) = ged(¥, x9,1(9(z)) = = + 391409« — 26500-3,

~ ~

Uy(x) := ged(¥, x92(9(z)) = 2® + (14777-3a — 150647 - 3) 2?
+ (1583323 — 117802-3)x + 188791 — 185620

of ¥(z). As Xo(y) has a root of valuation 1/3 at least one of the extensions given
by roots of @(x) must have ramification index greater than or equal to three. Thus
Wy(z) is irreducible. Computing the norm of ¥, (z) and ¥,(z) we get the irreducible

factors of ¥(x) modulo 3'% over k:

~

W1 (2) := Ngp (#1) = @* — 53000-3x + 204634
Us(2) = Np o (B) = 2® — 124147-32° — 128147-3z* + 120868327
+ 28201-322 + 107405-3x + 312880.
The two-element certificate (I'1(x), IT1(z)) = (x, 3) certifies @;(z); the two-element
certificate (I(z), II2(2)) = (z, Ng ) (z + 20)) = (2, 2° + 4) certifies P5(x).
Example 2.7.3. Let k = F5((¢)) be the completion of Fj3(¢) with respect to v(-),
normalized such that v;(t) = 1. Let
O(z) = 25 + 2tz + (¢7 + 2t)2® + 22 + (£ + 262 + 1% € F3((1))[z].
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We derive a factorization of ¥(z) € k = F5((t))[z] to a precision of 32 digits. Initially
we set p(z) := z. Then x,(y) = @(y). Thus ¢(z) = x passes the Hensel and Newton
tests and we obtain v} (¢) = 1/3. Replacing p(z) by z* we get

and therefore v} (p) = 1. Thus we set y(z) := p(z)/t = 23/t. Now

X, (y) = v° + 2yt + (" + 2)® + 27 + (¢ + 2t)y + 1

with x,(y) = ¥® + 2y + 1 and v,(y) = y + 1. Hence we replace ¢(z) by z* + ¢. The

characteristic polynomial
Xo(y) = y° +26%" + (' + 1) y° + %% + (' +T)y + 26°5 + 2°4 + ¢°
of ¢ passes the Hensel and Newton tests. As vy (¢) = 8/6 = 4/3 we set ¢(z) = tx.
The characteristic polynomial of y(z) = p(z)y!(z) is
Xy(y) = 90 + 109 + 101 + (2611 +2)y° + (267 + 11 +1%)y”
(T 4 28 1Sy 4 24T 2016 4 1
with v,(y) =y + 1. Replacing () with p(z) — (=1)9(z) = 2 + to + t we get
Xo(y) = y° +t*y" + 26%
Thus ¢(z) passes the Hensel and Newton tests.

As vf(p) = 4 we set y(z) := p(x)/t* = (2 +tz+1t)/t* and get x,(y) = y® +%y* +2.
We have
X () = (y +1)°(y +2)°.

Hensel Lifting gives the factors
Xy1(y) = y® + 2t +2t° + 1 and

Xy2(y) = 3+t 4+ 27 + 2

of x,(y) modulo ¢32. As the sum of the degrees of the polynomials

Xra(Y(2)) = (@ + 1) /t*23 + (t° 4+ 1) /- x + (2t + 2t + 3 + 1) /t* mod &(x),

Xy2(v(2)) = (18 + 1) /t4-2% + (18 + 1) /832 + (#** + 2t'2 + 2¢° + 1) /13 mod &(z)
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is equal to the degree of @ we only need to divide by the leading coefficients in order

to derive a factorization of @. Thus the polynomials
Dy (z) = 23 +to + 2% + 122 + 116 + 2610 + 247 + 14 +- ¢,
Py(z) = 2% +to + 12 + 202 + 26" + 10 + 247 + 2¢* + ¢

are the irreducible factors of @(z) to a precision of 32 digits. The two-element certifi-
cates (I (z), IT1(z)) = (1,z) and (I3 (z), IIo(x)) = (1,z) certify their irreducibility.

2.8 Complexity Analysis

Theorem 2.8.1. Let k be a local field and let ®(z) € Ox[z] be monic, separable, and

squarefree of degree N.

There ezists an algorithm that derives a factorization of ®(x) into irreducible factors
and returns an integral basis of k[z]/@(x)k[z] for every irreducible factor ¢(x) of

&(x) with the number of arithmetic operations in k being
O(log N(P(N,N) +T(N,N) + C(N)) + vy(disc ®)(R(1, N) + P(N, N))).

Lemma 2.8.2. Let k be a local field and let (x) € k[z] be monic, separable, and
squarefree of degree N. Let Eg be the minimum of the ramification indices and Fg be

the minimum of the inertia degrees of all extensions of k generated by roots of ®(x).

Algorithm 2.6.1 derives a proper factorization of ®(x) or a two-element certificate
for @(x) with the number of arithmetic operations in k being

vy (disc @)

O(log Fu(P(N, Fi) + C(Fp) + T(N, N)) + B0

(R(1, N) + P(N, F¢))).

Proof. Let k be an unramified extension of k contained in k(&) for all roots & of
&(z) and let F = [E : k|]. Then v,(disc®) > Fvy(disc ®), where &(z) is a factor of
degree N/F of &(zx) over k. Therefore extending the ground field does not increase
the number of repetitions of the main loop, i.e., steps a), c) to f) and i) are repeated
at most 2(Fg/N)v,(disc @) times by proposition 2.5.1. Note that two polynomials
of degree (deg®)/F over an extension k of degree F of k can be multiplied in
M(F - N/F) = M(N) operations in k.

a) The resultant in the Hensel test needs R(1, N) arithmetic operations in k.
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b) [increase E] An increase of E can occur at most log, Fg times. Computing o(x)*

is of complexity M(N)log Eg.

c¢) The extended euclidian algorithm needed for the computation of ¢! is of com-
plexity O(M(N)log N).

e) The resultant in the Newton test needs R(1, N) arithmetic operations in k.

g) [extend the ground field| The ground field can be extended at most log, Fp
times. Factoring x,(y) over the residue class field is of complexity P(N/F, F).
The construction of a primitive element of a compositum of two residue class field
is of complexity C(Fj). Deriving a proper factorization requires approximating
the greatest common divisor (see proposition 2.3.6) and computing the norm of
®(z) over k (see remark 2.3.11). This can be achieved in T(N, N), respectively
R(F, N/F), operations in k.

h) The factorization of x,(y) over the residue class field is of complexity P(N/F, F).

Thus a proper factorization of @(z) or a two-element certificate for @(z) can be

derived with the number of arithmetic operations in k being

o) (1og Fs(R(1, N) + P(N, F3) + C(Fs) + T(N, N)) + log Es (M(N) log(N))

vy (disc D)
N

=0 (1og Fp,(P(N, Fa,) + C(Fg) + T(N, N)) + Ea,

+ B, (R(1, N) + P(N, F¢)))

vy (disc @)

P (R(L,N) +P(N, F@))).
0

Proof of theorem 2.8.1. Denote by ®1(x), ..., P, (z) the irreducible factors of @(x).
Let Fp, be the inertia degree of the field given by @;(x). Let Eg, be the ramification
index of the field given by @;(x). It follows from 2.8.2 that the number of arithmetic
operations required for deriving a factorization of @(x) into irreducible factors is

m

Yo (1og Fy,(P(N, Fp,) + C(Fs) + T(N, N)) + Eg,

i=1

vy (disc P)
N

= O(log N(P(N,N) + C(N) + T(N, N)) + v,y(disc @)(R(1, N) + P(N, N))).

(R(1, N) + P(N, F@.)))

O
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Note that there are algorithms for factoring a polynomial of degree N over F, with
the expected number of bit operations being O(N?logq) (see Kaltofen and Shoup
[1998]).

If the residue class field of k is finite then lemma 2.4.4 implies that the expected
number of resultants needed to find an element § such that § is a primitive element
of the compositum k(f3,7) is O(1). Therefore, in this case, the expected value of
C(N) is O(NM(N)log(N)) operations in k.

It follows from proposition 2.5.1 and remark 2.3.8 that throughout the algorithm a
precision of 2v,(disc®) digits in the ground field is sufficient. Thus p2"»(dsc®) can
be used as a modulus for the triangulization of the matrices occuring in the com-
putation of the approximations of the greatest common divisor. Noting that the

triangularization is done over a local ring and to a fixed precision, it is easily seen
that T(N, N) = O(N3).

Corollary 2.8.3. Let k be a finite extension of Q, of degree k. Let @(x) € Ox[z] be

a monic, separable, and squarefree polynomial. There exists an algorithm that

e derives a factorization of ®(x) into irreducible factors and

e returns an integral basis of k[z|/p(x)k([x] for every irreducible factor p(z) of @(x)
with the expected number of bit operations being

O (N?”'Evp (disc @)H'E log™e p* + Nz*"?vp (disc @)2+5 log'™® p ) )
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Chapter 3

Totally Ramified Extensions

Let k be a p-adic field. Let n > 1, d > 0 be integers, and let p be the prime ideal of
k. In this chapter, we give an algorithm to compute all extensions of degree n and

discriminant p?.

In section 3.1 we state Ore’s conditions, which give all possible discriminants p¢ of
totally ramified extensions of degree n. In section 3.2 we introduce an ultrametric
distance on the set of Eisenstein polynomials of degree n. This distance is used in
section 3.3 in the construction of a set of polynomials defining all totally ramified
extensions of degree n. In section 3.4 we give explicit formulae for the number of
totally ramified extensions. In section 3.8 we describe the construction of totally
and tamely ramified extensions since this construction is easier than in the general
case. It is also possible to construct a set of generating polynomials for all extensions
of degree p in general (see section 3.6) and of extensions of degree p™ with some

restrictions. (see section 3.7). Section 3.10 contains two examples.

Note that similar formulas can also be given for local fields of characteristic p # 0.

The following result shows us that these are not particularly interesting.

Theorem 3.0.4. Assume that chark = chark = p # 0 and that k is perfect.

Then k is isomorphic to k = k((m)), the field of all power series in one indeterminate
7 over k with the exponential valuation given by the exponent of the lowest power of

.

36



Thus for the rest of our discussion we focus on the totally ramified extension K
of degree n of a p-adic field k. Let p and e be the prime ideal and the absolute

ramification index of k/Q, respectively. We denote the uniformizer of p by .

Let v, denote the unique prolongation of v, to k such that v,(7) = 1. Let ¢ denote

the cardinality of the residue class field of k.

3.1 Discriminants

The possible discriminants for totally ramified extensions of k are given by the fol-

lowing criterion from Ore [1926].

Proposition 3.1.1 (Ore’s Conditions). Let k be a finite extension of Q, with
mazximal ideal p. Given j € Z let a,b € Z be such that j =an+b and 0 < b < n—1.
Then there exist totally ramified extensions K/k of degree n and discriminant p" 7"
if and only if

min{v, (b)n, vy(n)n} < j < vp(n)n.

Proof. Every totally ramified extension K of k can be generated by a root £ of an
Eisenstein polynomial ¢(z) = 2"+, 12" +. . .+¢. We have disc (K/k) = disc (¢)
and vy (disc (p))/n = vp(¢'(€)). Because v,(§) = 1/n the valuations of ip;&~! for

1 <i<nand né™ ! are all different, we get

v(@'(€) = vp(E" "+ (n— 1)1+ 4 @)

—  min {vp(n) + nT_lavp(i) + (i) + i 7_1 1}

1<ig<n—1
' ) —1) +i —1
— min {nvp(n)’n(vp(2)+vp(%) )+l} L0
1<ig<n—1 n n n

Setting j := vy(disc (¢)) —n + 1 =nv,(¢'(§)) —n + 1 gives

j=, min | {nvp(n),n(ey(i) + vy() 1) + 3}

Thus either j = nvy(n) or j = n(vy(b)+vy(ps)—1)+bforsomel < b < n—1.Fixb € Z
with 1 <b<n—1.Set a:= vy(b) +vy(p) — 1. As vy(pp) —1 = 0 we get nvy(b) +b <
j = an + b. Because n { b we can simplify this condition to nwv,(b) < j = an + b.

~
Combining this case with j = nv,(n) we get min{nwv,(b), nv,(n)} < j < nuy(n).
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It is clear from the discussion above that for every 7 = an + b with
min{nwy (b), nvy(n)} < j < nvy(n)
we can construct an Eisenstein polynomial ¢(z) such that disc (p) = pm 1. O

Let j be an integer satisfying Ore’s conditions with respect to n (in particular 0 <
J < vp(n)n), and let j = an + b be the Euclidean division of j by n. The following is

trivial but crucial
nlj <= b=0 <= j=u,(n)n <= a=1vy(n).

Proposition 3.1.2. Let k be a finite extension of Q, with mazimal ideal p. Let K/k
be a totally ramified field extension of degree n and discriminant p"*7=1. Let ng, n,
be two positive integers such that n = ngn;. Suppose K/k has an intermediate field
Ko of degree ng and discriminant p™°90~L Then there exist integers jo, j1 such that

Jj = jon1 + j1 and such that ng, jo and ny, j1 satisfy Ore’s conditions.

Proof. Assume that K/k admits a sub-extension Ky/k of degree ny. Let Py be the
prime ideal of K and let p0ti0=1 (resp. P T71) be the discriminant of Ko /k (resp.
K/Kjy). Then ny, jo and nq, j; must satisfy Ore’s conditions. Furthermore, by the

formula for discriminants in a tower of extensions, we have
disc (K/k) = (disc (Ko/k))"* - N,k (disc (K/Kj)).
Now, since K /k is totally ramified, it follows that

j—1 jo—1 j1—1
pnﬂ — p(noﬂo )n1pn1+91 ,

which proves the result. O

3.2 Eisenstein Polynomials

We now fix an integer j fulfilling Ore’s conditions (proposition 3.1.1) and turn to the
more specific problem of the construction of all totally ramified extensions K/k of

degree n and discriminant p" =1,

Definition 3.2.1. Let k be a local field with maximal ideal p. We denote by K, ;

the set of all extensions of k of degree n and discriminant p™+7=1.
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Let E, ; denote the set of all Eisenstein polynomials over k of degree n and dis-
criminant p"™7 1. The roots of the polynomials in E, ; generate all the extensions
KecK,;.

For two elements ¢(z) and ¢(z) of E, ;, we set d(p,¢) := |p(B)| where 3 is a root of
¥ (z). Let 8’ be any root of 1/(z) and let 0 € Gal(v)) over k such that o(3) = f'. Since

o is an isometry, we have [¢(8)] = |o(2(8))] = le(o(8))] = lp(8)| hence d(p,v)
does not depend on the choice of 5. Observe that

lp(B)|" = H lo(Bi)] = H |/3¢ - aj‘

where f; (respectively «;) denote the roots of 1 (z) (respectively ¢(z)). The last

formula is symmetric with respect to ¢(z) and ¥ (z). Thus for any root « of ¢(z) we
obtain the equality |p(5)| = |¢(«)|. Hence, d(p, ) = d(¥, ).

The distance d(ip, 1)) is easily calculated using the following lemma.

Lemma 3.2.2. Write o(z) = 2"+ pp_12" L+ -+ o and Y(z) = 2" + 12" 1 +
<o« + g and set

. 1
w:= min {Up(¢i — i)+ ﬁ} :

0<ig<n—1

Then d(p,v) = |m|*.

Proof. Observe that

n—1

P(a) = (e) — pla) =D (¥ — ¢i)a’,

=0
and since « is a prime element, v,(a) = 1/n. Thus in the sum above all the terms

have different valuations. It follows that the valuation of ¢ («) is the minimum of
these. 0

Let o(z) = 2" + 12" + -~ + o, ¥(x) = 2" + hp12" " + - + 1y, and I(z) =
" + 9, 12" 1 + - -+ + 9y be polynomials in E,, ;. We have
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min Lot -+ 1)

0<i<n—1
l
> : 3 Vo . L — . J—
Z odign {mm tpli = 00wl i)} + n}
T odignet {mm {”"(% SO E vt ﬁ}}

= min {053%51_1 {Up(%’ — ;) + ﬁ} oS {Up(ﬁi — ;) + E}} .
Thus d(p, ) < max{d(p,?),d(?,¢)}, i.e., d satisfies the ultrametric inequality. It

is clear that d(p, 1) = 0 if and only if ¢(z) = ¥(z). The following result summarizes
the properties of d.

Proposition 3.2.3. Let ¢(z) and ¥(x) be two polynomials from the set E,; of

Eisenstein polynomials of degree n and discriminant p"7 = over k. Then d(p, ) :=

lp(B)] = |¥(a)| where o (respectively ) is any root of ¢(x) (respectively 1(x)) de-
fines an ultrametric distance over E,, ;. Furthermore, let p(x), ¢ be two elements of

E,;, a =o,..., o, the roots of p(x), and  one of the roots of ¥ (x) which is closest
to a. Then

d(QD, dj) = Hmaxﬂﬂ - a/|’ |Oé - a1|}
=1

3.3 Generating Polynomials

In this section, we construct a set of polynomials that generate all the extensions in
K

n,5*

Let m > | > 1 be two integers, and R, ,, a fixed system of representatives of the

quotient

/e
We denote by Rj,, the subset of those elements of R;, whose vy-valuation is exactly
L.

For 1 < i< n—1, define

1) = max{2+a —v,(3),1} ifi <,
" | max{l+a—v,(7),1} if¢>b.

Let ¢ be any integer such that
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2b 24
c>1+2a+—:n+ ].
n n

The reason for choosing these values of /(i) and ¢ will become clear presently.

Let {2 be the set of n-tuples (wy, . ..,w, 1) € k™ satisfying

Ri, ifi=0, (1)
wi €4 Ripye ifl<i<n—Tlandi#b, (2)
To each element w := (wp, - - -, wn_1) € {2, we associate the polynomial A, (z) € Okz]

given by
Ay(@) = 2" +wp 12" - 4w+ w.

Lemma 3.3.1. The polynomials A,(x) are Eisenstein polynomials of discriminant
pn+j71'

Proof. Since (i) > 1 for all ¢, we have vy(w;) > 1 and (1) gives vy(wp) = 1. Thus,

A,(z) is an Eisenstein polynomial.
Let s be a root of A, (z). Since the discriminant of A,, = N,/ (A, (5¢)), the second
assertion is equivalent to

) — 1 b—1

(A () = -

But A/ (5) = ns" '+ (n — 1)wy_1" 2 + - - -+ w;y and v,(A,(3)) is the minimum of
these valuations since they are all different.

It is straightforward to see by (2) that for ¢ # b

. b—1
vp(iwisd ) > 1+a+ ——,
n

and fori =b6#10 -
vp(bwps” ) =1+a+ %

If b # 0 then by Ore’s conditions
vp(nae™ 1) > vy (buwps ).
Hence v(A],(2)) =1+a+ (b—1)/n.

If =0, then for 1 < i < n—1 we have a = vy(n), thus
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vp(na" ™) = vy (n) + (n — 1)/n < vy (iw;se ")
and therefore v, (A, (5)) =1+ vy(n) — 1/n as required. O

Theorem 3.3.2 (Krasner). Let ¢ be an integer such that ¢ > 1+2a+2b/n. The set
E, ; is the disjoint union of the closed discs Dg, ;(Ay,T) with center A, and radius

r:= |p¢| as w runs through (2.
Proof. Lemma 3.3.1 proves that the polynomials A, are indeed elements of E,, ;.

Let w and w' be two distinct elements of {2 and let ¢ be such that w; # w;]. Then

1
<c—14+—-<c
n

?
vp(wi — wp) + -

and thus by lemma 3.2.2, d(4,, A,) > r and by the ultrametric property of d the

discs D,, and D, are disjoint.

Now, let ¢ be an element of E, ; and write ¢(z) = 2™ + @p_12™ 1 + - - + @o. Since

f is an Eisenstein polynomial, v,(¢) = 1 and there exists wy € R}, such that
p 1,c¢
Yo = wp mod p°.

By reasoning as in lemma 3.3.1, we find that vy(¢;) > (7) for all ¢ > 0 and there
exists w; satisfying (2) or (3) such that

Y; = w; mod p°.

Let w = (wo,...,wp—1). We claim that f € D,. We have v,(¢; — w;) > ¢ for
t=20,...,n—1. Thus, for all 7

Z=c

3| .

vp (i — wi) +
which by lemma 3.2.2 proves the claim. O

Corollary 3.3.3. Let w be an element of £2 and let 3¢ be a root of A,(x). Then the
extension k() /k is a totally ramified extension of degree n and discriminant p™+i—L.
Conwversely, if K/k is a totally ramified extension of degree n and discriminant pm+i—1

then there erist w € §2 and a root » of A,(z) such that K = k().

Proof. The first claim is clear since the polynomials A, (z) belong to E, ;. For the

second, let o be a prime element in K and denote its irreducible polynomial over k
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by ¢(z). We denote by aq,...,q, the roots of p(z). Let € {ay,...,a,} and let

Ay be the minimal distance between « and any other root of ¢(z). Then
@' (@) = [ ]l = aul < Aplpt=2/m|
i=2

since the «; are prime elements. But
' ()| = [pH7=D/m]

and thus
A(P > ‘p(]+1)/"|

Now let w € {2 be such that d(p, A,) < r = |p¢| where ¢ > 1+2a+2b/n = (n+25)/n
and let s denote a root of A, such that |s — «| is minimal. Then we claim that

7 — af < A, since otherwise
A, si herwi
n
dip,A) = ][max{la—sd,la—ail}
=1
Zn
> [[max{ae,]a - ail}
i=1

> Ap ][l -l = Aglg(a)|
1=2
> [ptin|

This contradicts |p™+%)/?| > r by the particular choice of c. Hence |z — a| < Agp
and it follows by Krasner’s lemma (proposition 1.3.1) that K = k(). O

3.4 Number of Extensions in K,, ;

We have constructed a finite set of polynomials that generate all the extensions in
K, ;, namely the set {A, | w € 2}. Nevertheless, for each extension, there are in
general several polynomials A, that generate the same extension. Hence the number

of extensions is in fact smaller than the number of elements in (2.

The aim of this section is to prove exact formulae for the number of extensions in

K, ;. These formulae are interesting by themselves, but will also be useful to get a
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more efficient algorithm for the computation of all totally ramified extensions of a
given degree and discriminant (see section 3.8 for details). We also use them as a
tool in the computation of canonical generating polynomials of degree p in section
3.6.

We will need the following lemma.

Lemma 3.4.1. Let t > j+ 1 be an integer and let s := ‘p(”+j_1+t)/”|. Let #Dg, ;(s)
denote the number of disjoint closed discs of radius s in E, ;. Then the number of

elements in K, ; is
n

(g —1)g"*
Proof. Let II,, ; denote the set of all prime elements of members of K, ;. Alternatively,
II,, j can be defined as the union of the sets P\ P? where P is the prime ideal of some

#K,; = #Dg, ,(s)

member of K, ;. Let u be the map from 11, ; to E, ; that sends a prime element to

its minimal polynomial over k.

Let u = [p¥/"| and let o and 8 be two elements of IT,, ; such that [a — 8| < u. Then
« and § generate the same field K € K,, ; by Krasner’s lemma (proposition 1.3.1).
Observe that we have d(u(a), u(8)) < u |p("+j’1)/”‘ = s by the same reasoning as
in the proof of corollary 3.3.3. Hence u(Dp(a,u)) C Dg, ;(p(c), s), where Dz (o, u)
is the closed disc of center o and radius w in II,, ;. Conversely, let f € E, ; and let «
denote any root of f,so f = u(a). Then it is straightforward to prove, using the same
methods, that Dg, ;(u(), s) C p(D(a,u)). Thus, Dg, ;(u(c), s) = uw(Dp (e, u)) for
all o € II,, 5.

Now, the map p is clearly surjective and n-to-one. Furthermore, the inverse image
of p(a) is the set of conjugates of a over k, and, since ¢ > j + 1, the closed discs of
radius u centered at the conjugates of « are all disjoint. It follows that the inverse
image of any closed disc of radius s in E,, ; is the disjoint union of n closed discs of
radius u in I1, ;. But, again by the remark above, any such disc is in fact contained
in P\ P? for some K € K, ;. Thus, the number of disjoint closed discs of radius u
in 17, ; is equal to #K,, ; times the number of disjoint closed discs in P \ P, which
does not depend on K € K,, ;. This number is easily seen to be equal to ¢! — ¢'2,

and so
#K,;q7? (¢ — 1) = n#Dg(s),
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and the result is proved. O

Theorem 3.4.2. Let k be a finite extension of Q,, let p be the prime ideal of k with
e its ramification index, and let q¢ be the number of elements in the residue field of
k. Let j = an+ b, where 0 < b < n, be an integer satisfying Ore’s conditions. Then

the number of totally ramified extensions of k of degree n and discriminant p™+i—1

18
nqi=t ifb=0,
#K'ﬂ,] - Laz/ej / Z+L(_L / J _1)/ |_a/ej+1J
n(g—1)qg= P ? ifb>0

We compute the number of elements in the closed disc Dg, ;(r) of radius [p¢| and

then apply lemma 3.4.1 to obtain #K,, ;.

Lemma 3.4.3. The number of polynomials A, where w € (2, or equivalently by

theorem 3.3.2 the number of disjoint closed discs of radius r := |p°| in B, ;, is given
by

la/e] )
ne—n—j—14+ > en/pt
(a—1)q =

#Dg, ,;(r) = o
Y (4 1)2 qnc—n—j—l-i— i§1 en/pi+| (j—|a/een—1)/ple/el+1 |

ifb=0,
if b > 0.

Proof. The number of elements in Rj_ is (¢ — 1)¢“=2. For i # b, the number of
elements in Ry is ¢ and the number of elements in Rip),e is (@ —1) ge i1,

So we have

=24 (n—1)e—'S" 1)
_1 & ifb=0,

#DEn,j (r) = (g )q .
c—2+(n—1)c—1- 37 I(4)

(g —1)%q i=1 if b > 0.

It remains to compute the sum 3" ' I(i). For b > 0, we get

Zl(z) =n—1+ Zmax{l +a—vy(2),0} + Zmax{a — wvp(4),0}.

Let 7 > o be two positive integers and let p > 0 be a real number. Then
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Zmax{p—vp(i),O} = Z Z max{p — ei,0}

20 V=0 |
vz vp(v)=i

lo/e]
= Z@ Z

—6’&

’
V):i

= So-an(|7)- [55) - 175+ |%2))

Thus, using this formula, we find

el

Sl(i) = n—1+ ;(1—%—&—62') Qb;lJ - V;;}J)

St (175 - 15 - 15 < [5)

Note that, in the first summation, we can replace |(a + 1)/e] by |a/e| since these

are the same if e { a + 1, and otherwise the term ¢ = (a + 1)/e does not contribute

to the sum since in this case 1 + a — et = 0. Rearranging and simplifying the sums,

we obtain
il b—1 n—1
Zl(z) = n+b+an—-1)—-2- \‘pita/eHlJ —a \‘pita/eHlJ
i=1

la/e]

+ela/e] L,?/;JLJ -2 V;lJ

i=1

Since b > 0 by Ore’s conditions we find that v,(n) > |a/e] + 1. It follows, that for
all 1 <7< |a/e] + 1, one has | (n —1)/p'| = n/p’ — 1. Thus,

n—ll. ~ ) 5 an b—1 ela/e|n Laf%
Z (0) = an+b+n- T plafel+1 T | plefel 1 +p|_a/ej—|—1 T i

i=1 =1 p

— |la/elen — 1 Lae]
j— la/e] J Z_

= n+j_2_{ p|_a/e+1

The formula for 6 = 0 can be derived in a similar way. O

Theorem 3.4.2 is proven by choosing ¢ such that n + 57 — 1 +¢ = nc and applying

lemma 3.4.3 and lemma 3.4.1.
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3.5 Tamely Ramified Extensions

In this section let K/k be totally and tamely ramified, i.e., p does not divide n = [K :
k|. The description of totally and tamely ramified extensions of p-adic fields is well-
known (see [Hasse, 1963, Chapter 16] or theorem 3.5.2 below). The aim of this section
is to recover this description using the methods developed in the previous sections.
Note first the following result the proof of which follows directly from proposition
3.1.1.

Proposition 3.5.1. Let K/k be a totally and tamely ramified extension of degree
n. Then j = 0 and thus the discriminant of this extension is p"* 1, a = b = 0, and

c=2.

The totally tamely ramified extensions of degree n of k are described by the following

theorem.

Theorem 3.5.2. Let ¢ be a primitive (¢ — 1)-th root of unity contained in k, let g
be the ged of n and g — 1, and let m := n/g. Then there are exactly n totally and
tamely ramified extensions K/k of degree n. Furthermore, these ertensions can be
split into g classes of m k-isomorphic extensions, the extensions in a given class

being generated over k by the roots of the polynomial
"+ ('
withr =0,...,9g—1.

Proof. We look at the set of generating polynomials defined in section 3.3. Proposition
3.5.1 tells us that j = a = b = 0, and that the smallest value for ¢ is 2. We choose

1o = {70 <i<g—2}and Ry := R} ,U{0}. Then the roots of the polynomials
"+ Wy 12"+ - -+ wy where w; € Rigfor1<i<n—1and wy € R“{’Q generate

all these extensions K.

We now turn to the extensions K generated by the roots of the polynomials 2™ + ('r
(i.e., we take w; = 0 for 1 < 4 < n — 1). Let « be such a root. Then it is clear
that for any integer h, ("o generates the same extension. Furthermore, the minimal
polynomial of ("« is z"+(™*i1 and one can choose h such that nh+i = r (mod g—1)
with 0 < r < g. So in fact it is enough to consider only the polynomials 2™ + ("7
with0<r<g—1.
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Now let 2 + ("1 and 2" + ("7 be two such polynomials, with 0 < r, 7' < ¢ — 1 and
r # ', and let o (respectively o) be a root of 2™ 4 ("7 (respectively 2" 4 (" 7). Then
if & and o generate the same field, it follows that this field contains an n-th root
of ¢"~"'. But this is not possible, since this field contains only the (¢ — 1)-th roots
of unity and r — ' is not a multiple of n modulo ¢ — 1. So o and o' generate two
distinct extensions of k. Furthermore, the conjugates of  over k are o, pa, . .., p" lo
where p is a primitive n-th root of unity in @p such that p™ = (@ 1/9 (recall
that m = n/g). It is clear that o, p"a = (@ V/9q, ..., pld=Vmq = (9=DaD/9g 3]l
generate the same field, whereas «, pa, ..., p" '« all generate different extensions.
Thus, the roots of the polynomial 2™ 4+ ("7 generate m isomorphic but distinct
extensions, and the roots of all of these polynomials generate mg = n extensions.
Since we know that this is exactly the number of totally ramified extensions of degree
n of k by theorem 3.4.2, this proves that all the totally ramified extensions of degree n
of k are obtained considering only these polynomials, and that any other polynomials

are redundant. O

Proposition 3.5.3. Let K be a totally ramified extension of k of degree n and dis-
criminant P71 with n = ngp® and ged(ng, p) = 1. Then K has a tamely ramified

subfield K of degree ng over k with discriminant p™~!.

Proof. By proposition 3.1.2, all the subfields of degree ng of K, provided they ex-
ist, have discriminant p™°~!. Assume such a subfield K exists. Then disck /Ko =
PL 1! where j; = j = a(nep®) + b and Py is the prime ideal of K. Using theorem
3.4.2 we obtain

#Knj = #Kng0 #(Ko)n, -

Hence either all extensions K have such a subfield of degree ny or some of the

extensions K have two or more non-isomorphic subfields of degree ny.

Let m be a uniformizer of k. Assume K, and K; are non-isomorphic subfields of

degree ngy over k, generated by the polynomials
po(z) = 2™ + (" and ¢i(z) =2" + ("7

respectively (see theorem 3.5.2). Let 3¢ be a root of ¢, then

%0.7))

U(o) = — 2200

= "0 _ Cn—ro
o
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has a root in K. If ¢ has a root in k then Ky = K; which contradicts the assumption
that Ko 2 K, and if ¢ has no root on k then the extension K/k has inertia degree
greater than 1, which contradicts the assumption that K/k is totally ramified. [

3.6 Extensions of Degree p

Let k be an extension of Q, of degree ef with ramification index e, prime ideal p, and
inertia degree f. Set g := p/. In this section we present a canonical set of polynomials
that generate all extensions of k of degree p. Note that similar polynomials have been

given by Amano [1971], although our results are more explicit.

Let j = ap + b. By theorem 3.4.2 the number of extensions of k of degree p and

discriminant p"*t7 -1 is

plg—1)¢* ifb#0.
We will give a set of canonical polynomials for every possible value of 7 = ap+b. Let
¢ be a (g — 1)-th root of unity, and set R = (py,--.,pe1) = (0,1,¢, 3. .., (772,

then R is a multiplicative system of representatives of k in k.

¢ if b=0
4K, = { P

First we will compute a set of canonical generating polynomials for pure extensions
of degree p of a p-adic field that is, for the case b = 0. Secondly we give a set of
canonical generating polynomials for extensions of degree p of discriminant pPraer+b=1

where b # 0 of a p-adic field. We use the notation from section 2.1.

Extensions of p-adic fields of discriminant pPre—1

Theorem 3.6.1. Let L(0) := {r € Z | 1 < r < pe/(p—1), pt r}. Then each
extension of degree p of k of discriminant pP*teP=! is generated by a root of exactly

one of the polynomials of the form

D ) i+1 pe/(p—1)+1 . (p - 1) | e and
o(z) = 2+ T+ Y ier) P+ K0T U + (p/m®) is reducible,
P+ T+ Do) Pe; T otherwise,

where § is chosen such that xP? — x + § is irreducible over k and 0 < k < p. These
extensions are Galois if and only if (p— 1) | e and xP~1 + p/n® is reducible, i.e., if k

contains the p-th roots of unity.
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Lemma 3.6.2. Let

o) =2 +7+ Z pe; ™+ why
i€L(0)

and

v(r) =2 +7+ Z pa, 4+ TS
1€ L(0)

where p.,, ps; € R, R > pe/(p—1), and 7, 6 € Ok. Let o be a zero of f and § be a
zero of g in an algebraic closure of k. If ¢; # d; for some i € L(0) then k(a) 2 k().

Proof. We will use Panayi’s root-finding algorithm (algorithm 2.1.4) to show that
Y(z) does not have any roots over k(). As ¢(x) = 2P mod (7) we set () :=
Y(ax). Then

Vi(z) = ofaP +7+ Z pa; ™+ 7hS
i€L(0)

= (-m— z pe,m T — wRy)2P + 7+ Z pa; 't 4+ S
i€ L(0) i€L(0)
= 7(—2P +1)

Hence 7 (2) = ¢y (z) /7 = —2P + 1 and we set 1hy(x) := g7 (az + 1).

Let §; be a root of gfﬂ. Let 2 < r < pe/(p — 1). Assume that the root-finding
algorithm does not terminate with deg 1/)3# = 0 for some 2 < j < r and that there
ist <r <pe/(p—1) with 5; # 0 mod («). After r iterations of the root-finding

algorithm we have

¢T+1 (‘,E) = (_]— - ch_lﬂ-i - pca+27ra+1> (aTx + /BT'—laTil +--+ /Btat + ]-)p
1€ L(0)
+1+ Z pdi+17ri + pcla+17Ta+1 + WR_I(S
1€ L(0)
= —oz’ —pd'z - pﬁtat + Z (pdi+1 - p0i+1)7ri'
i€L(0) izt
The minimal valuation of the coefficients of ¢, 1(z) is either v,(a?") = pr or

va(pBiat) = pe +t. As ged(p,t) = 1 and ¢ < pe/(p — 1) there exists r € N such
that the polynomial ¢* ".1(z) is constant. Thus the root-finding algorithm terminates
with the conclusion that ¢(x) is irreducible over k(«). O
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It is obvious that a pure extension can be Galois only if k contains the p-th roots of

unity.

Lemma 3.6.3. Assume that p(z) := 2P~ + ¢ € F,[z] has p — 1 roots in F,. Then
there ezists d € F, such that Yy(x) = 2P + cx — kd € F,[z] is irreducible for all
1<k <p.

Proof. Let h(z) = 2P + cx € F,[z]. As ¢(x) splits completely over F,, there exists
d € F, \ h(F,). Now ¢;(z) = 2P 4+ cx — d is irreducible. It follows that

ki (z) = ka? + ckx — kd = (kx)? + c(kz) — kd

is irreducible. Replacing kz by y we find that ¢ (y) = y? 4+ cy — kd is irreducible over
F, O

q-

Lemma 3.6.4. Assume k contains the p-th roots of unity and let t = pe/(p — 1).
Then there exists 6 € Oy such that

o) =2+ 7+ Z pe, T+ k6T € Oy 7]
1€ L(0)

and

B =2 b rt Y pur 4 1om € Oyl
1€ L(0)

generate non-isomorphic extensions over k if | # k.

Proof. Let o be a root of ¢(z). We set ¢1(z) := ¢(az) and @a(z) := ¢ (az + 1).
After ¢ + 1 iterations of the root-finding algorithm we obtain o, ;(z) = —aPx? —
patz+(1—k)drt. By lemma 3.6.3 there exists § € Oy such that ¢}, ,(2) is irreducible

forall 1 < k <pandall 1 <[ < pwith k& # [. Therefore 1(z) has no root in k(«).

Thus ¢(z) and v (z) generate non-isomorphic extensions over k. O

Proof of theorem 3.6.1. We will show that the number of extensions given by the
polynomials () is greater or equal to the number of extensions given by theorem
3.4.2. The number of elements in L(0) is

O = L)p—elJ - Lo(zopi 1)J - L%J - L?i 1J -

By lemma 3.6.2 the roots of two polynomials generate non-isomorphic extensions if

the coefficients p., differ for at least one i € L(0). For every 7 we have the choice
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among p’ values for p.,. This gives ¢° polynomials generating non-isomorphic exten-

sions.

If k does not contain the p-th roots of unity then an extension generated by a root
a of a polynomial ¢(z) does not contain any of the other roots of ¢(z). Hence the
roots of each polynomial give p distinct extensions of k. Thus our set of polynomials

generates all pg® extensions.

If k contains the p-th roots of unity then lemma 3.6.4 gives us p — 1 additional
extensions for each of the polynomials from lemma 3.6.2. Thus our set of polynomials

generates all pg® extensions. O

Extensions of p-adic fields of discriminant pPteP+d—1 p £ @

Theorem 3.6.5. Let L(0) := {r € Z |1 < r < (ap+b)/(p—1),p1 (b+7)} and
if(p—1) | (a+0b) sett :=a+ (a+b)/(p—1). Each extension of degree p of k
of discriminant pPTPTOI=L with b # 0 is generated by a root of exactly one of the
polynomials of the form

(p—1)| (a+b) and
2P + Crotlagh 4+ + > ieL(0) P, 4+ kot af $ aP 4 (—1)PHCh
1s reducible,
2P + Ol + 3 ) P otherwise,

p(z) =

where p € R and 0 is chosen such that z + (—1)*'(°bx + § is irreducible in k
and 0 < k < p. These extensions are Galois if and only if (p — 1) | (a +b) and
2Pt — (°b € k[z] is reducible.

Lemma 3.6.6. Let
o(x) = 2P + a2l 4 1+ y7® € O ft]
and
Y(x) = 2P + e + 1+ on? € Okt]
with 7,6 € Ok. If s # t then the roots of p(x) and ¥ (x) generate non-isomorphic

extensions of k.

Proof. Let « be a root of ¢(x). Then o /1 = —(*7%" — 1 — yw. We use Panayi’s
root-finding algorithm to show that v (z) has no root over k(a). As before we get
1 (x) == Y(ax) = 7(—2P + 1). Therefore we set
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o(z) = ¥ (az +1) = (1% — 1 — 1) (az 4+ 1)? + 'n%(ax + 1) + 1 + o

Let 2 < r < e. Let 3i € R be a root of ﬁ(w) Assume that the root-finding
algorithm does not terminate with deg wf = 0 for some 2 < 7 < r and assume that
there exists r such that ¢t < r < pe/(p — 1) with 8, Z 0 mod («). After r iterations

of the root-finding algorithm we have

ra(@) = (=% =1 —ym)(@"z + frad ™ 4+ Bua” + 0+ -+ 0+ 1)°
+ ¢l + Broga” 4+ B + 04+ 0+ 1) + 1 4 6.

Because 7 < e, vo(p) = pe, and a < e, the minimal valuation of the coefficients
of Y,11(z) is either vo(—aP) = pr or ve(7%®) = pa + b. Hence the root-finding
algorithm terminates with 1,1 (z) = (¢* — ¢*)7®a® for some r in the range 2 < 7 <
e. U

Lemma 3.6.7. Let

o(x) = 2P + Cr*tiab 4+ Z pe, w4+ TRy € Ot
i€L(0)

and

1/}(1') = zP +<S7ra+1l'b+ﬂ'+ Z pdiﬂ.i—l—l -|—7TR5 c Ok[t]
i€ L(0)

with pe,, po, € R, R > a+a+b/(p—1) and v, § € Ok. Let o be a zero of ¢(z)
and 8 be a zero of (x) in a fized algebraic closure of k. If ¢; # d; for some i € L(0)
then k(o) 2 k(B).

Proof. We use Panayi’s root-finding algorithm to show that ¢ (x) does not have any

roots over k(a). As ¢(z) = 2% mod (), we get ¢, (z) := ¢(az). Now ¥ (z) = —zP+1
and we set 1y (x) == ¥ (ax +1).

Let 3; be a root of wﬁl(x). Assume that the root-finding algorithm does not termi-

nate earlier with deg wf = 0 for some j < r. After r iterations we have

93



7vbT-l-l (3:) = (_csﬁaab -1- Z pCi+17ri - pca+27ra+1>

ieL(0)
(@4 B e B+ 1)P

+ %@’z + Bra” P+ Bt 1)1
+ Z pdi+17ri + pda+17ra+1

1€L(0)
— pr P r t % t\p t\p
= —x T —pax —pﬁta - Z ch_lﬂ- (Bta) - (Bta )
1€L(0)
+ Cr%alba’z + bbbl + Z (,Odm - Pci+1)7Ti
1€ L(0)

with £; # 0 mod («). The minimal valuation of the terms of ¢, () is
v (7 a’bBt) = pa + b + 1

or v,(a?") = pr. By the choice of L(0) we have p { (pa + b + t). Therefore the

root-finding algorithm terminates with v, (z) = (*7%abbB;a! for some r € N, O]

Lemma 3.6.8. Let

o(z) = 2P + M + Z pe, ™+ € Olz]
i€ L(0)
with p(c) = 0 for some o € k. Then k(c)/k is Galois if and only if a + b =
0mod (p —1) and 2P~' + (=1)P*(% is reducible over k.

Proof. We will show that ¢(z) splits completely over k(«) if and only if the conditions

above are fulfilled. Using the root-finding algorithm (algorithm 2.1.4) we set ¢, (z) :=

o(azx) and @y(z) = ¢ (az + 1), ie.

pa(x) = (—Csﬂao/’ -1- Z pciﬂ) (az +1)P + %P (ax +1)° 4+ 1+ Z Pe; T
i€ L(0) ieL(0)

= (-2 + Cr%altD).

After r + 1 iterations we get

—a'PxP ifrp<pa+b+r,
Ori1(7) = 2(—a™2Pt + Cn%®tTh)  if rp=pa+b+r,
¢ mtabtibg ifrp>pa+b+rand (p—1)1(a+b).

In the third case ¢}, (z) is linear and therefore ¢(z) has only one root.
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In the second case
Ory1(z) = —a™a? + G The = —a'Pa? + (=) + o7

thus @7, (r) = —2?~" + (=1)®¢*b mod (o). If ¥, | (x) has p roots over k for every
root 8 of go,ﬁl(:c) we get

@ri2(7) = @ryi(az+p) = _a(rﬂ)pxp"'(_1)apar+1/3<s7raab+(‘Dap@rﬂbﬁbfsﬁaab@“-

But rp+p > r+ 1+ pa + b; thus gpf”(x) is linear and ¢(z) has as many distinct
roots as @7, (z). O

Lemma 3.6.9. Assume that a+b = 0 mod (p—1) and 27~ +(—1)"*1(%b is reducible
over k. Then there exists 6 € Oy such that

p(z) =a? + (a2l + ) pe T+ kor' € Oyla]
icL(0)

and

Y(z) = 2P + Crtla + Z pe, ™ T+ 10T € O]
1€L(0)

(where t =a+ (a+b)/(p— 1)) generate non-isomorphic extensions over k if | # k.

Proof. Let a be aroot of (). Using the root finding algorithm we set 1 (z) := p(ax)
and @y (z) 1= ¢7 (az +1). We get @1 (z) = —aP2? + Cnoa? bz + (k — 1)én' hence
ol (x) = 27 + (—1)®*1¢%bx + (k — 1)0. By lemma 3.6.3 there exists § € O such
that ¢7. | () is irreducible. O

Proof of theorem 3.6.5. If (p — 1) 1 (a + b) then

£1(0) = a+{a+bJ_{a+b+ a+b J_{?

p—; p pp-1) b p ,
a —1 a(p—1 a -1
el ety

If (p—1) | (a+0b) then

4I(0) = a+a+b_1_{a+b+ a+b)_1J_{%

p—1 p p(p—1 p
_ a+b—1_ a+b—1 .
— - | =



Using lemma 3.6.6 we get p/ — 1 sets of generating polynomials. By lemma 3.6.7 each
of these sets contains p/® polynomials that generate non-isomorphic fields. Now either
the roots of one of the polynomials generate p distinct extensions or else the extension
generated by any root is cyclic. In the latter case we have p—1 additional polynomials
generating one extension each by lemma 3.6.9. Thus we obtain (p/ —1)p®/*! distinct

extensions. O

Corollary 3.6.10. Let k be an extension of Q, of degree n. The number of Galois
extensions of k of degree p and discriminnant pPToPo—L g

pt—1

p—1

p

Proof. Let ¢(x) as in theorem 3.6.5. We denote the inertia degree and the ramification
index of k by f and e respectively. The number of values of s s for which 27! — (*
is reducible is (p/ — 1)/(p — 1). By Ore’s Conditions 0 < a < e. For every a there is
exactly one b with 1 < b < p such that (p — 1) | (a + b). For every a the set L(0)
contains a elements. This gives p/@ combinations of values of ¢;, i € L(0). We have p

choices for k. Thus the number of polynomials ¢(z) generating Galois extensions is

F_q1 &L ;o fe _ n_

p'—1 Z fa p'—1 plf-1 p"—1
p. . p :p. . :p. .

p—1 = p—1 pi—1 p—1

3.7 Extensions of Degree p™

Let 7 = ap + b. By theorem 3.4.2 the number of extensions of k of degree n = p™

. .. m m_1 .
and discriminant pP" temP™ -1 g

p™ -1

m e
#kpm+empm—1 =p-q »!

In the case of extensions of degree p™ with m > 1 we only give a set of polynomials
generating independent extensions (but not — as before for extensions of degree p —

a set of polynomials that give all extensions).

Lemma 3.7.1. Let p be a prime number, let m € N, and let a < p™ with p t a. If
1<r<p™—1 then
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(7)) -t

m_— s

Proof. For any 1 < s < p™ — 1 we have v, <ap ) = 0. Hence

((pm)) - (%)ﬂp((r—l)%ﬂ )0)

= (e Dt )

B ap™ —(r—1) ap™ -1\ _
= m—l—v,,( S 1 =m.

Extensions of discriminant p?” temp™—1

Proposition 3.7.2. Let k be a p-adic field. Set

m
Ho) = {ZEZ‘1<Z< Eor el <1< andp“},
p—1 p—1
em—evp() I < em and p™ =1 44 if
LG) = {Il€Z| eph ephtt
_1<pm—h+p(l_eh)<p_1Wlth1<h<m—1
for1<ie<p™—1. Let
ml_l
o(x) =2 + Z ch” 1 Z Do A
=1 leL(i 1eL(0)

and
ml -1

¢$—$p + Z Zpd1l+1+zpdol l+1+7T

=1 leL(3) leL(0)

Assume ¢;j # d;y for some 0 <1< p™ ' —1 and somel € L(i). Let o € kand 5 €k
be roots of p(z) respectively 1(x). Then k(o) 2 k(B).

Note that L(i) = & if p 1.

Proof. We use Panayi’s root-finding algorithm (algorithm 2.1.4) to prove that ¥ (x)
does not have any roots over k(a). As in the proofs of lemmas 3.6.2 and 3.6.7, we

get
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=1 leL(7) leL(0)
-1
+ a®zy’? Z pa;, T + Z Pdy, ™ + 1
i=1 1EL(4) 1€L(0)

We denote by f; a lift of a root of ¢s+1( z) to k(). Let t be the smallest integer such
that 5; # 0 mod (o) and let r < ep™/(p — 1). Then

¢7'+1($) = (_ Z a™® Z Pe;, T Z Peo, T — )

i=1 =70) 1eL(0

(T +a" 1B771+---+atﬁt+0+---+0+1)?”
pm—1
+ Z oo+ B+ 4B+ 04+ 0+1) Y pg,, 7
lEL(3)

+ Z pdo,lwl + 1.
1€L(0)

Again we assume that the root-finding algorithm does not terminate earlier with
deg(ﬁ(m)) = 0 for s < r. It will become clear presently why the root-finding
algorithm cannot terminate with deg(y# (z)) = 1 under the condition r < ep™/(p —

1).
Consider the term (a"z + 1)P". For every r the non-constant term with coefficient of

lowest exponential valuation is one of

m m m—h m—h
o P e P L P

The exponential valuations of the coefficients of these terms are

V(@) =1p™, L v (PP = ehp™ + rp™ L v (P = emp™ + .

We find that if r > ep"™/(p — 1) then
m m—h m m—h—1
hep™ + rp > (h+1)ep™ + rp )

Thus for ep™/(p — 1) < r < ep"*!/(p — 1) the valuation of the coefficient of the term
pha/”’m*h is lower than the valuations of the coefficients of any other non-constant

term of (a"z + 1)P". Therefore the degree of ((a"z + 1)pm)# is1ifr > ep™/(p—1).
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Consider the term of(a"z+1)'7*™~* @ By lemma 3.7.1 for every r the non-constant

term with coefficient of lowest exponential valuation is of the form

g rpvp()=9 xp”P(i)_gﬁemfevp(i)

oa'pla
with 1 < g < v,(¢). The valuations of these terms are
Ua(aipgarpvp(i)—g:L‘pvp(i)_gﬂ_emfevp(i)) =i+ p™(em — ev,(i) + eg) + rper(®-9,
If r > ep™ v»@O+9+1 /(p — 1) then
i+ p™(em — evy (i) + eg) +rp™ D9 > i+ p™(em — ey (i) + e(g + 1)) + rp=@ .

Thus for ep™ % @+9/(p —1) < r < ep™»W+9+1 /(p — 1) the valuation of the coef-
ficient of the term aip9a ™"~ gp"?") 7 rem—en(i) ig lower than the valuations of the

coefficients of any other non-constant term of of(a/z + 1)'7m=ve (@),

We compare the non-constant terms with minimal valuation from (a"z + 1)?" and
o (az + 1)'7m=v ) for a given ep/(p — 1) < r < ep™/(p — 1). Setting h := m —
vp(7) + g, we obtain

Ua(phoz”’m_h) = ehp™ +rp™ "

m—m—+vp(i)—g

= efm— )+ g™ +rp
< i+e(m—u,(i)+ g)p™ +rp*D9

i vp(i)—g Hup(i)—g _ i
Vg (angarp » P p em evp(z))‘

Hence the non-constant term relevant in the root-finding algorithm is always of the
m—h

form p" (ofx)p
In step r where ep"/(p — 1) < 7 < ep"*'/(p — 1) for some 1 < h < m — 1 we get

By # 0 only if v (phar®™ ") = vo(af + ) for some 1 < i < p™ — 1 and [ € L(i). It
follows that

,Ua(pharpm*h) — ehpm + Tpm—h =i+ lpm — ’l)a(ai + ’ﬂ'l);

hence
h . h+1

ep o b
p— <r—pm_h+p (l—eh)gp_l.
m—h+1|z"

It is obvious that p | r if and only if p
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Assume that v,(i) = m — h; then p{r. Set s := ip~*® and d := [ + v, (i) — m. We

obtain . bt
e e

p <r=s+ptd< 4
p—1 p—1

and as 1 < p™ we have 1 <1 < p" pti, and 0 < d < ev,(i). Therefore

s+p'd < p" =1+ p"(ev,(d) — 1) = plev, (i) — 1.

If v,(i) > 1 we have pev,(i) — 1 > ep"™/(p — 1). Thus for every r with ep"/(p —
1) <r <epht/(p—1) and p { r there exist 1 < i < p™ — 1 and | € L(i) with
r=1i/p™ "+ ph(l — eh).

If v,(i) = 1 then h = m — 1 and ep™ ' — 1 < ep™/(p — 1). For every r with
ep™ t/(p—1) <r <ep™!—1and pfr thereexist 1 <i<p™—1and ! € L(7)
with r =i/p+p™ (I —em —e). For ep™ —1 < r < ep™/(p— 1) such elements 7 and

| do not exist.

We have seen that for r < ep™/(p — 1) all the valuations of all coefficients of non-
constant terms with minimal valuation are divisible by p. The valuations of all con-

stant terms of the form of + 7!p are divisible by p as L(i) = @ if p | 1.

The valuations of the constant terms of the form p™S3;a! are not divisible by p. If
r > ep™/(p—1) then deg (1/1,“) 1. The coefficient of the linear term of ¢, 1(x) has
valuation v, (p o} ) =emp™ + 1 >empTep™/(p—1). As t < ep™/(p — 1) the root-
finding algorithm terminates with deg (1/)T+1) =0forsomel <r<ep™/(p—1). O

Remark 3.7.3. Proposition 3.7.2 gives us a set S C E, ; of polynomials whose roots

define non-isomorphic fields extensions of k.

e The number of integers [ with 1 <l <ep/(p—1)orep™ ! <l <ep™/(p—1)is

e ep™ e ep™ 1
w= [ 2] e = b+ [
p—1 p—1 p—1 p—1

e The number of integers [ with em — v, () <! < em for ¢ from 1 to p™ — 1 is

pm—1 p™—1

2= 2wl = 3 ) 11_em.

1=1

e The number of integers r with 0 <7 < ep™/(p — 1) with p | r is
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»= =) - [
3= —F| = .
p(p—1) p—1
e But there exist » with p | r such that there isno ¢ with 1 < ¢ < p™—1and [ € L(7)
such that

h : h+1
e 1 e
L cr= o pr-en) < T,
p—1 pm p—1
or respectively
e m—1
P <r<ep™h
p—1

We have v, (i) < m — 1. Therefore v,(ip"~™) < h — 1.

If h < m — 1 then the number of integers r with ep”/(p— 1) <r < ep*/(p— 1)
and v,(r) > h is

| Car IS IR T

o
The number of integers r with ep™ '(p — 1) <7 < ep™ ! and v,(r) > m — 1 is

w2l o) e

pm! p—1
We get
§ = 81+ 83— 83+ (m—2)s4+ s5
ep 6pm—l pm -1 epm—l e
- —em — —2 -
{p—lJ_i_{p—lJ—i_ep—l em o +(m—2e+e —
pm—1
= e .
p—1

Thus the number of polynomials in S is

™ _1

#S =q" =q" T .

Note that if the roots of every polynomial in S generate p™ distinct extensions, then

1

all extensions of degree p™ and discriminant p?" t¢™P" ~1 are given by the elements

of S.
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3.8 Computing Totally Ramified Extensions

Let k be a finite extension of @, with maximal ideal p. Let n and j be such that

they satisfy the conditions of section 3.1.

The following algorithm finds a minimal set of polynomials generating all totally
ramified extensions of degree n and discriminant p™*7/~! using the polynomials A,

defined in section 3.3.

Algorithm 3.8.1 (Totally Ramified Extensions).
Input: k, n,j
Output: A minimal set of polynomials generating all totally ramified extensions

of k of degree n and discriminant p™+7-1

e Compute #K,, ; using theorem 3.4.2.
oL+ .
o+ 0.
e For w € (2:
e Let 3¢ be a root of A, (x).
e If no h € L has a root in k() then:
oL — LU{A,}.
e Let r be the number of roots of A4, in k().
ol Il+n/r.
o If | = #K,, ; then return L.

Notice that we could test all the polynomials A, for isomorphism and keep only
the ones defining non-isomorphic extensions. However, since the number of these
polynomials is far greater than the number of extensions, it is better to proceed
as above, that is, to compute the number of extensions at the beginning and to
stop when enough polynomials have been found to generate all these extensions.
This explains why it is useful to know the number of such extensions before the

construction.

There are several improvements that can be made to this algorithm.

o If p does not divide n, one can use theorem 3.5.2 to get directly a minimal set of

polynomials generating all extensions.
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e If n = p one can use the complete description of extensions of degree p as given in

section 3.6.

e If n = p™ one can start with a set of polynomials defining distinct extensions (see
section 3.7).

e Also, the computation becomes faster if one enumerates the elements of (2 in such

a way that the distance between polynomials in L and the next A, is maximal.

e We can improve the computation time considerably by using propositions 3.1.2
and 3.5.3, which enable us to compute the subfield lattice at the same time. We
first compute all suitable sub-extensions Ky/k and then construct the absolute
extensions K /k which are relative extensions of Ky. Since the number of polyno-
mials to be considered is much smaller in the relative case and one has to look
for roots of polynomials with smaller degree and discriminant, this reduces the
computation time considerably, especially in the case treated in proposition 3.5.3.
Splitting up the construction of extensions this way enables us to apply theorem
3.5.2 and the results of sections 3.6 and 3.7.

The proof of lemma 3.4.1 can also be used to compute a minimal set of polynomials
in a different way. We use the notation from the proof of lemma 3.4.1. In addition
to the map p that sends a prime element « in II, ; to its irreducible polynomial
p(a) over k, we define a map g from I7,, ; to {2 that sends this prime element to the
unique element w € {2 such that d(u(a), A,) < r. Also, for such a prime element «,
we define the set A(«) to be a (fixed) set of representatives of the prime elements of
k() modulo B¢, where P, is the prime ideal of k(). For example, one can choose
A(a) to be the set of elements a (o + (1 + - -+ + (20! %) where the (;’s range
through a set of representatives of Oy /p and (y Z 0 (mod p).

Proposition 3.8.2. Let o be an element of I, ;. Then the set {f(B): B € A(a)}
is exactly the set of w € (2 such that o and any root of A, define k-isomorphic
extensions. Moreover, for any such w the number m of B € A(«) such that u(f) = w
is independent of w and is the number of k-automorphisms of k(c); so, in particular,

the number of conjugate fields over k of k(«) is n/m.
Proof. This is a direct application of the proofs of corollary 3.3.3 and lemma 3.4.1. [

This gives us the following algorithm.
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Algorithm 3.8.3 (Totally Ramified Extensions).
Input: k, n,j
Output: A minimal set of polynomials generating all totally ramified extensions

of K of degree n and discriminant pm+7—1

o Let {wy,...,w;} be the elements of £2.
e For 1 <1<, set B; + 0.

o — .

ec<+ 1.

e While ¢ < [:
eif B.=0:

oL +— LU{AL,}.
e Let s be a root of A4, .
e For all d such that wy € 1" (A()):
o B, «+ 1.
ec+c+1.
e Return L.

Since the basic operation in algorithm 3.8.3 is the computation of characteristic poly-
nomials whereas the basic operation in algorithm 3.8.1 is the root finding algorithm,
this algorithm seems faster than the latter. But this is not the case in general. The
reason is that the number of elements in A(a) is (¢ — 1)¢' 2 and so the number of
such basic operations quickly becomes large. Furthermore, if in algorithm 3.8.1 the
polynomials from A, are chosen cleverly, the algorithm can rapidly find polynomials
defining all non-isomorphic extensions and thus can terminate after using the root

finding algorithm only a few times.

3.9 Generating Polynomials of Galois Extensions

Shafarevich [1947] also gives a formula for the number of extensions of a p-adic field.

Instead of Krasner’s topological approach he chose a group-theoretic approach.

Theorem 3.9.1 (Shafarevich). Let k be a finite extension of Q, with [k : Q,] = n.
Let G be a group of order p™ with d < n+ 1 generators and Aut(G) the group of its

automorphisms. The number extensions of k with Galois group G is
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1 #G n+1d—1 . i
#Aut(G)(pd> 1o =)

=0

Yamagishi [1995] generalized Shafarevich’s results to include the case when k includes

the p-th roots of unity. The following proposition is a consequence of his work.

Denote by 1, and g, the set of the p-th, respectively p?-th, roots of unity.

Proposition 3.9.2 (Yamagishi). The number of Galois extensions of degree p* of

k with ramification index E and inertia degree F' is given below.

Galois gl r number of extensions of k, if
group py ¢ k ‘ tpy C k and pye ¢ k ‘ 2 C k
pn -1 pn—l—l -1
p|p p—1 7p 1
CpXCp p2 . 2pn_1pn—1_1 p2pn+1_1pn_1
p—1 p?—-1 p—1 p2-1
1 | p? 1
Cpe plp p" —1 pttt—1
no_ 1 o] n+1l _ 1
|1 Pt p P p P p
p—1 p—1 p—1

Denote by e and f the ramification index and inertia degree of k. Let 7 be a prime

element of k and let ¢ € k be a (p/ — 1)-th root of unity.

Lemma 3.9.3. Let 9(x) € k[z] be monic with deg(¥) = p and ¢(x) irreducible over
k[z]. Let j = ap+b such that they fulfill Ore’s Conditions and such that p—1 divides
a+b. Let

o(r) = 2P + ¢’ + 7 + Z pe; ™ € k[z]
i€L(0)

with P~ + (—1)P*1(*b in k[z] reducible. Denote by I' and IT roots of O(z) and ¢(x)
respectively. Then k(I', IT) /k is Galois with Galois group isomorphic to C, x C,.

Proof. By theorem 3.6.5 k(II) is Galois over k. In the proof of corollary 3.6.10 we
have seen that the number of polynomials of the form o(z) is (p" — 1)(p — 1). By
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theorem 3.6.5 these generate non-isomorphic extensions. As the coefficients of ¢ (z)
are fixed by all elements in Gal(k(I")/k) the extension k(I IT) is Galois over k. [J

Remark 3.9.4. We use the notation from theorem 3.6.5. Fix a, b, s, and ¢;, € L(0).
For k € {1,...,p} set

op(w) =2 + Ca b o+ Z pe, w4 (b — 1)or"™ € k[a].
1€L(0)
Denote by II; a root of ¢ in an algebraic closure of k. Let 9(z) € k[z] be monic
with deg(+)) = p and ¢(z) irreducible over k[z]. The lattice of subfields of k(I', II,) =
oo = K(T, IT,) is:

For 0 € Gal(K/k) and ¥(x) = cpa" + --- + c12 + ¢o € K[z] denote by o(¢)(z) the
polynomial o(c,)z" + -+ + o(c1)x + o(co).

Lemma 3.9.5. Let 9¥(z) € k[x] be monic with deg(d¥) = p and 9(x) irreducible over
k[z]. Denote by I' a root of ¥(x). Let j = ap+b such that they fulfill Ore’s Conditions
and such that (p—1) | (a + b). Let
o(z) = 2 + Erab + 7+ Z pe; ™+ kort € k(IN)[z]
1€L(0)
with 2P~ — (°b reducible in k[z] and 6 € k(I') such that 2 — bz + 6 € k(I")[z]

is irreducible. Let IT be a root of ¢(x). Then k(I IT)/k is Galois with Galois group

isomorphic to Cp.

Proof. All Galois extensions of degree p of k(I") are generated by the roots of poly-

nomials of the form

QO(.’L') :$p+CS7Ta+1.’L'b+7T+ Z pCiﬂ_i-{—l_}_kéﬂ_t-{—l,
1€ L(0)
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where (p — 1) | (o +b) and 2P~' — (*b is reducible in kz].

Let II be a root of ¢(z). The extension k(I',II)/k is Galois if for every o in
Gal(k(I")/k) the polynomial o(y)(z) is reducible over k(I', IT). By lemma 3.6.6 the
extension k(I',IT)/k is not Galois if ¢* € k(I') \ k. It follows from the proof of
lemma 3.6.7 that k(I, IT) /k is not Galois if p., € k(") \ k. By Lemma 3.9.3 we have
Gal(k(I',II)/k) = C, x C, if k = 0. This leaves

p—1 p—1

Galois extensions of k of degree p? with ramification index p and inertia degree p

and Galois group not isomorphic to C, x C,,. O

Proposition 3.9.6. Let 9(z) € Q,[z] be monic with deg(d) = p and ¥(z) irreducible
over B, [z]. Let I be a root of 9(x). Let o(z) := zP + (p—1)pxP~' +p € Q,(I). Let
be a root of p(x). Let () :=a? + (p— 1)wxP~  + 7. Then Q,(I',m, IT) is the unique

Galois extension of Q, with Galois group isomorphic to

E,:={o,1;0° =7 =]0o,7]P =1, [0, ]0,7]] = [1, [0, 7]] = 1).

The lattice of subgroups of F; is shown below. The subgroups with dotted lines are

not normal in F.

Proof. It follows from theorem 3.9.1 that there is only one Galois extension of @,

with Galois group isomorphic to Ej.
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First we show that Q, (I, 7, IT) is Galois over Q,. As the coefficients of ¢(z) and ()
are fixed under the automorphisms of Q, (I") the extension Q, (I, 7, II)/Q,(I") is Ga-
lois. It follows from the proof of lemma 3.6.8 that there exists o € Gal(Q, (I, 7)/Q,(I")
generating Gal(Q, (I, m)/Q, (I), such that o(7) = m7+7* mod 7. This gives o(¢)(z) =
2’ + (p — 1)(7 + )2~ + 7 + 72, We use the root-finding algorithm to show that
o(¢)(x) has a root over Q, (I, 7, IT). We get

o(¥)a(x) =7(a” + (p -z +1)

(c.f. proof of lemma 3.6.7) which has p roots over Q, (I', 7, IT). It follows that o(¢)(z)
has p roots over Q, (I, m, IT). Thus Q,(I',m, IT) is Galois over Q.

The extension of degree p? with Galois group isomorphic to E, is the only Galois
extension of degree p? which has p? totally ramified subfields of degree p? that are

not Galois over Q,.

For i € {0,...,p— 1} let p;(z) :== 2P + (p — 1)pz? ' + p + ip* € Q,[z] and denote
by m; a root of ¢;(x). For i € {0,...,p— 1} and k£ € {0,...,p — 1} let ¢ix(x) =
2P + (p — D)ma?™' + m + kn? € Q,(m;) and denote by I, a root of ¥;x(x).

We show that Q,(m;, II;;) is not Galois over Q,(m;). It follows from the proof of
lemma 3.6.8 that there exists o € Gal(Q,(m;)/Q, such that o(7) = m; + 77 mod 73.
This gives o(Yi)(z) = 2P + (p — 1)(7 + 72)zP~ + 7 + 72. We use the root-finding
algorithm to show that o(;)(z) has a root over Q,(I, 7, II). As in the proof of
lemma 3.6.8 we get

o(P)2(z) = mi(a? — (p— Dz + 1),
which is irreducible over Q, (m;, II;). Thus Q, (m;, II;;) is not Galois over Q,(m;). O
For p # 2 the lattice of subfields of the unique extensions of Q, of degree p* with Ga-
lois group Ej is depicted below. The elements I', m;, and II, with ¢, k,l € {1,...,p}

are as in the proof of proposition 3.9.6. The elements a4, ..., o, are generators of the

remaining degree-p extensions of Q, (I").

68



3.10 Examples

Example 3.10.1 (Extensions of degree 9 and discriminant 3'? over Q).
There are 54 extensions of degree 9 and discriminant 3%4~! over Q;. We compute all
these as absolute extensions over Q3. We find the following generating polynomials,

each of them defining 9 isomorphic extensions.

$1(z)=2"+2-32* +3 Py(z)=2+2-32*+2-32%+3
Gy(x) =2 +32*+2-323+3  Ps(x) = 2° + 32* + 3
3(z) = 2° + 3z* + 323+ 3 P(z)=2"+2-32* +2°+3

Following proposition 3.1.2, we compute the subfields of degree 3 and discriminant
33tJ4o—1 where j, = 1. Notice that these are the only possible subfields. We find
out that there are six such subfields generated by the roots of the two polynomials
o1(z) = 23 + 62 + 3 and po(x) = z° + 3z + 3. Let m; and 7y be zeroes of ¢, and s
respectively. Each of the fields Qs (7;) admits six totally ramified extensions of degree
ny = 3 and discriminant (m;)3"/17! where j; = 1. These extensions are generated by
Y (z) = 23 + mr + m; and VYp(x) = 23 + 2mz + 7; over Qs(m;).

Let «; denote a root of ;. Using algorithm 2.1.4 we get that Qs(m)(aqs) =
Qs3(mg)(c21) and that the other fields are distinct. So we have found 27 extensions of

degree 9 that have subfields of degree 3. Let II; be a root of @;. We have Qs (II5) =
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Qs (m1)(ca1) = Qs(m2)(12), Qs () = Qs(m1)(va2) and Qs (1) = Qs(m2)(11). The

lattice of subfields (up to isomorphism) is depicted below.

Qs (1) Qs(Iy) Qs(113) Qs U4) Qs (115) Qs (1,

f
/ ]1?1
j:4 77,1—3
J= @3(71) Qs () *
Jo=1
n0:3
|

Example 3.10.2 (All extensions of degree 10 of Q5). There is one unramified
extension of degree 10; it is generated over Qs by the roots of ¢(z) = ' + 22® + 3.

There are two extensions with residue degree 5 and ramification index 2. The un-
ramified part k/Qs is defined by ¢(z) = 2° + 32% + 3 and the tamely ramified part
K/k by ¢;(z) = 2* + 5i where 1 = 1,2.

There are 605 extensions with residue degree 2 and ramification index 5. These
extensions K are generated over the unramified field k := Qs (p), p*> + 2 = 0, by the
polynomials in the following table. The roots of each polynomial generate N distinct
isomorphic extensions. Together, the polynomials in each line generate a total of #K

extensions of absolute discriminant 5°77~1.

J generating polynomials N | #K
1| 25 +5(hi+hep)z+5  hy, he €{0,1,2,3,4}, (hy, hy) # (0,0) | 5 | 120
2| 2% +5(hi + hop)z?2 +5  hy, he € {0,1,2,3,4}, (hy, ho) # (0,0) | 5 | 120
3| 2%+ 5(hi+ hop)z® +5  hy, ho € {0,1,2,3,4}, (hy, ho) # (0,0) | 5 | 120
4 | 2° 4 5(hy + hop)z* +5 hi, ho € {0,1,2,3,4} | 5 | 90
(h1, h2) ¢ {(0,0),(1,0),(2,1),(2,4),(3,1),(3,4), (4,0)}
4 | 2° 4 5(hy + hop)z* 4 5+ 25hgp ho € {0,1,2,3,4} | 1 | 25
(h1,h2) € {(1,0),(2,1),(2,4),(3,1),(3,4)}
4| 2% 4+4-52* + 5+ 25h ho,€{0,1,2,3,4} | 1 | 5
5| 2% + 5+ 25(hy + hap) hi, ho € {0,1,2,3,4} | 5 | 125

There are 1210 totally ramified extensions of degree 10 of Q5. Using proposition

3.5.3, we find that they are relative extensions over one of the two tamely ramified
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extensions of degree 2 defined by ¢;(z) = z* + 5i where ¢ = 1,2. Let m; be a root of
©;. The wildly ramified part is generated by the polynomials in the following table
over Qs (m;). The roots of each polynomial generate N distinct isomorphic exten-
sions. Together, the polynomials in each line generate #K extensions of absolute

discriminant 50+,

J generating polynomials N | #K
1 | 2%+ hymz + hy € {1,2,3,4} | 5 | 20
2 | 2® + homiz?® + 7 he € {1,2,3,4} | 5 | 20
3 | 2%+ hgmz® + hs € {1,2,3,4} | 5 | 20
4 | 2%+ hymzt + 7 hs€{1,2,3} | 5| 15
4 | 2° +dmxt + (7 + hom?) ho € {0,1,2,3,4} | 1 | 5

6 | 2°+ hmiz + (m + hom?) hy € {1,2,3,4}, hy € {0,1,2,3,4} | 5 | 100
7 | 25+ hym2a? + (m + hom?)  hy € {1,2,3,4}, hy € {0,1,2,3,4} | 5 | 100
8 | 2° + mym2ad + (m; + hom?) hy € {1,2,4}, ho € {0,1,2,3,4} | 5 | 75
8 | #° 4 3122 + (m; + how? + M) ho, h1 € {0,1,2,3,4} | 1 | 25
9 | 2°+ mm2at + (m + hom?) € {1,2,3,4}, ho € {0,1,2,3,4} | 5 | 100
10 | 2° + (m; + hom? + ha7}) hy, hs € {0,1,2,3,4} | 5 | 125

This gives 605 extensions of degree 5 over (71 ) (resp. Q(m2)). Hence there are 1818
extensions of degree 10 of Q5. Note that there are only 293 non-isomorphic extensions
of degree 10 of Qs.

3.11 Future Developments

This thesis can be regarded as a step towards a generalized, constructive class field
theory for p-adic fields. The methods described above work well for small examples,

i.e., when the number #Dg, ; of polynomials A, with w € (2 is small.

A complete description of extensions of degree p™ would speed up the computation
considerably. Here the methods of Lbekkouri [1997] could be applied. He gives con-
ditions on the coefficients of Eisenstein polynomials over Q, of degree p?, to decide

whether the extensions defined by these are normal.
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The number of polynomials can be easily reduced by using additional invariants of

the extensions to be computed in addition to the degree and discriminant.

The indices of inseparability, introduced by Arf [1939] and refined by Heiermann
[1996], could be easily used, as they can be translated directly into conditions on the

coefficients of the defining polynomials of extensions.

It is ultimately desirable to refine the algorithm so that it returns all extensions of
a p-adic field of a given degree, discriminant and Galois group. Once the description
of extensions of degree p* has been completed (see section 3.9) it should be possible
to construct totally ramified Galois extensions of (Q, using methods similar to those

in the proof of proposition 3.9.6.

These approaches are subjects of ongoing research.
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