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1 Introduction

Global �elds F are either �nite extensions of Q or of F

q

(x), a rational function

�eld in one variable over a �nite constant �eld. The integral closure o

F

of R =Z

or R = F

q

[x], respectively, in F is a Dedekind domain and a free R-module of

full rank, i.e. o

F

=

L

n

i=1

R!

i

, where n denotes the degree of the extension and

!

i

; 1 � i � n, an integral basis.

In case F being a number �eld, o

F

can be identi�ed via the Minkowski map

with a lattice in the Hilbert space R

n

. The most famous and e�cient algorithm

for basis reduction, the LLL-algorithm (cf. [6]), uses the existence of the inner

product in R

n

extensively in a sophisticated way.

Unfortunately, when F is a function �eld, there is no identi�cation of o

F

with

a lattice in a Hilbert space because all valuations on F are discrete. Therefore,

it is impossible to adapt the LLL-reduction to the function �eld case.

In this paper we sketch a reduction algorithm for integral bases in function

�elds where the in�nite place P

1

is tamely rami�ed. This algorithm allows us,

e.g., to compute an integral basis !

1

; : : : ; !

n

2 o

F

with B(!

i

) = M

i

; 1 � i � n,

where B is a special length function on F and the M

i

's are generalized successive

minima of o

F

with respect to B. Furthermore, we give some applications to the

unit group computation of o

F

in �elds of degree � 3.

For proofs and a more detailed description we refer to a forthcoming paper.

2 Preliminaries

Let q := p

r

be a prime power, x transcendental over F

q

and

F := F

q

(x; �) with f(x; �) = 0;

where � 2 F

q

(x) and f 2 F

q

[x; y] is an irreducible polynomial with deg

y

(f) = n

which is monic and separable in y.

The exact constant �eld

e

F

q

is de�ned to be the set of all elements of F which

are algebraic over F

q

.

e

F

q

is a �nite extension of F

q

with [

e

F

q

: F

q

] =: l j n.

For K 2 fF

q

(x); Fg, we denote by P(K) (Div(K)) the set of all places (di-

visors) of K. With P 2 P(K) we associate the corresponding valuation ring

O

P

, the surjective valuation v

P

: K �! Z[ f1g and the absolute value



j � j

P

:= q

�v

P

(�)

; q

�1

:= 0. The quotient O

P

=P is isomorphic to a �nite ex-

tension of F

q

. We de�ne deg(P ) to be the degree of this extension.

Especially, when K = F

q

(x) we set O

1

:= fg=h 2 F

q

(x) j g; h 2 F

q

[x]; h 6�

0; deg(g) � deg(h)g and denote by P

1

(= x

�1

O

1

), v

1

and j � j

1

:= q

�v

1

(�)

the corresponding place, surjective valuation and absolute value, respectively.

By o

F

(o

F;1

) we denote the integral closure of F

q

[x] (O

1

) in F . Furthermore,

we set U

F

:= o

�

F

.

Then there exists s 2 f1; : : : ; ng, and pairwise distinct P

1

; : : : ; P

s

2 P(F )

with P

1

o

F;1

=

Q

s

i=1

P

e

i

i

, where e

i

:= e(P

i

jP

1

) is the rami�cation index and

f

i

:= f(P

i

jP

1

) the relative degree of P

i

over P

1

, (1 � i � s). We enumerate

P

i

; e

i

and f

i

subject to

e

i

� e

j

and if e

i

= e

j

: f

i

� f

j

for all 1 � i < j � s;

and call the 2s-tuple (e

1

; f

1

; : : : ; e

s

; f

s

) 2 N

2s

the signature of F=F

q

(x).

Finally, we set e := lcm(e

1

; : : : ; e

s

), n

i

:= e

i

f

i

and denote by v

i

:= v

P

i

(j � j

i

:= q

�v

i

(�)

; q

�1

:= 0) the extensions of v

1

(j � j

1

) to F , (1 � i � s).

3 Geometry of Numbers

As in the number �eld case the e�ciency of algorithmic methods applied to

o

F

strongly relies on the choice of a \good" integral basis with respect to a

special length function. In this section we generalize the notion of length func-

tions, lattices and successive minima given by K. Mahler [7]. We start with some

de�nitions.

De�nition1. For a �nite extension E=F

q

and k 2 N let

Ehx

�1=k

i :=

�

1

X

i=m

a

i

x

�i=k

j m 2Z; a

i

2 E

	

denote the �eld of Puiseux series in x

�1=k

and by

V

k

: Ehx

�1=k

i �!Z[ f1g : � =

1

X

i=m

a

i

x

�i=k

7�!

n

1 � = 0;

minfi 2Zj a

i

6= 0g else;

a surjective valuation on Ehx

�1=k

i.

For the remaining of the section we �x E=F

q

with d := [E : F

q

] 2 N, k 2 N

and set L := Ehx

�1=k

i.

De�nition2. A function G : L

n

! R

�0

(G : F ! R

�0

) with

1. G(�) = 0, � = 0,

2. G(��) = j�jG(�) (G(��) = j�j

1

G(�)) and

3. G(�� �) � maxfG(�); G(�)g



for all � 2 L;�; � 2 L

n

(� 2 F

q

(x); �; � 2 F ) is called a length function on L

n

(F ).

De�nition3. Let R be a subring of E[x

1=k

] and M 2 GL(n; L). Then � =

�(M;R) := fM� j � 2 R

n

g is called an R-lattice in L

n

.

With these de�nitions at hand we remark an analogue to lattices in R

n

.

Remark. The ringR is a discrete subset of L equipped with the topology induced

by the absolute value q

�dV

k

(�)

. Therefore, an R-lattice � � L

n

is a discrete,

additive subgroup of L

n

with the product topology.

We generalize the notion of the successive minima.

De�nition4. Let R be a subring of E[x

1=k

], � � L

n

an R-lattice and G a

length function on L

n

. For i 2 f1; : : : ; ng the value

M

i

(�;R;G) := minf � 2 R j there exist R-linear independent

a

1

; : : : ; a

i

2 � with G(a

j

) � �; 1 � j � ig

is called the i-th successive minimum of � (with respect to R and G).

Replacing G by a length function on F and � by o

F

, we de�ne for R := F

q

[x]

analogously the i-th successive minimumM

i

(o

F

; R;G) of o

F

(with respect to R

and G).

In [7], K. Mahler proved that E[x

1=k

]-lattice bases can always be chosen to

achieve the successive minima.

Theorem5. Let G be a length function on L

n

, M 2 GL(n; L), R := E[x

1=k

],

� := �(M;R) and M

i

:=M

i

(�;R;G); 1� i � n.

Then there exists a T 2 GL(n;R) with V

k

(det T ) = 0 and

G(b

i

) = M

i

; 1 � i � n; where (b

1

; : : : ; b

n

) :=MT:

We now consider a special length function which will become important con-

cerning algorithms for global function �elds.

De�nition and Lemma1. The function

B : F �! R

�0

: � 7�!

s

max

i=1

j�j

1=e

i

i

is a length function on F with B(�) = q

B

�

(�)

where

B

�

: F �! fa=e j a 2Zg[ f�1g : � 7�! �

s

min

i=1

v

i

(�)=e

i

and B

�

j

o

�

F

� 0:



Remark. The analogue of B in number �elds is as follows: Let K = Q(� ) with

g(� ) = 0 where � 2 Q and g 2Z[t] is a monic, irreducible polynomial of degree

n. The roots �

1

; : : : ; �

n

of g are sorted according to �

i

2 R;1 � i � r

1

, and

�

i

= �

i+r

2

2 C nR; r

1

+1 � i � r

1

+r

2

with suitable r

1

; r

2

2 N

0

. Then j�j : Q! R

has r

1

+r

2

non-equivalent extensions, namely j�

(i)

j; 1 � i � r

1

, and j�

(i)

j

2

; r

1

+1 �

i � r

1

+ r

2

where �

(i)

denotes the the mapping onto the i-th conjugate (cf. [13,

Proposition 5-1-2.]). By de�nition, f

i

= 1; 1 � i � r

1

+ r

2

; e

i

= 1; 1 � i � r

1

;

and e

i

= 2; r

1

+ 1 � i � r

1

+ r

2

(cf. [3, p. 57]). Therefore, the analogue of B in

number �elds takes the form: � 7! max

r

1

+r

2

i=1

j�

(i)

j for � 2 K.

Concerning the successive minima M

i

:= M

i

(o

F

;F

q

[x]; B); 1 � i � n, we

obtain

Theorem6. There exists an integral basis !

1

; : : : ; !

n

2 o

F

withM

i

= B(!

i

); 1 �

i � n.

When P

1

is tamely rami�ed in F , i.e. p - e, we will compute an integral basis

satisfying Theorem 6 in section 5.

The structure of the successive minima depends on the exact constant �eld

as we can see from

Lemma7. For l = [

e

F

q

: F

q

] we have

1 = M

1

= : : : = M

l

< M

l+1

= : : : = M

2l

� : : : � M

n�l+1

= : : :M

n

:

4 Integral Basis Reduction

For many constructive problems concerning F it is important to compute ele-

ments � 2 F with prescribed lower bounds for v

1

(�); : : : ; v

s

(�) or, equivalently,

elements with upper bounds for j�j

1

; : : : ; j�j

s

.

When we are dealing with number �elds, this corresponds to the computa-

tion of elements with prescribed upper bounds for the absolute values of the

conjugates; usually, this is done by enumeration of a weighted positive de�nite

quadratic form (cf. [9, Chapter 5, Lemma (3.11)]).

For function �elds, we do this in a di�erent way, as we will show in the sequel.

We start with the de�nition of a suitable Riemann-Roch space which goes back

to W. M. Schmidt [11]:

De�nition8. For D =

P

s

i=1

c

i

P

i

2 Div(F ) with c

i

2Z; 1 � i � s, and t 2 R

we de�ne the

e

F

q

-vector space

L(D; t) := f� 2 o

F

j v

i

(�) � �c

i

� te

i

(1 � i � s)g:

Remark. By the product formula, we have L(D; t) = f0gwhenever

P

s

i=1

f

i

(�c

i

�

te

i

) > 0.



For function �elds over C (x) there is a deterministic algorithm for deter-

mining a basis for L(D; t) (cf. [11]) which is based on [2]. This algorithm uses

Puiseux expansions of all roots of f over P

1

which causes no problems since the

constant �eld C has characteristic zero and is algebraically closed.

Before we can give a suitable modi�cation of the algorithm which works over

�nite constant �elds, we �rst have to deal with Puiseux expansions of the roots

�

1

; : : : ; �

n

of f over P

1

.

Recalling the de�nition of the �elds of Puiseux series from the last section

we can describe the roots of f in the case when P

1

is tamely rami�ed:

Theorem9. If p - e, then there exist

d

1

; : : : ; d

n

2 f1; : : : ; ng; d 2 f1; : : : ; lcm(d

1

; : : : ; d

n

)g

and an enumeration of �

1

; : : : ; �

n

with

(�

1

; : : : ; �

n

) = (�

1;1

; : : : ; �

1;n

1

; �

2;1

; : : : ; �

2;n

2

; : : : ; �

s;1

; : : : ; �

s;n

s

)

such that �

i;j

2 F

q

d
hx

�1=e

i

i � F

q

d
hx

�1=e

i; 1 � j � n

i

, are Puiseux expansions

at P

i

; 1 � i � s. Furthermore, F

q

d contains all e

i

-th roots of unity, 1 � i � s.

Remark. 1) The Puiseux expansions can be obtained via the Newton-Puiseux

method (cf. [12, Chapter IV]).

2) If p j e, then the expansions obtained via the Newton-Puiseux method are

not necessarily of Puiseux type but generally of Hamburger-Noether type (cf. [1,

Chapter II], [10] and [4]).

3) If we are not interested in F=F

q

(x) but in F=F

q

, and there is a place

P 2 P(F

q

(x)) of degree one which is tamely rami�ed, it is possible to interchange

the places P

1

and P . Of course, this leads to a transformation of x into an

x

0

and we study F=F

q

(x

0

) instead of F=F

q

(x) but now with tamely rami�ed

P

1

2 P(F

q

(x

0

)).

From now on let

(�

1

; : : : ; �

n

) = (�

1;1

; : : : ; �

s;n

s

) 2 (F

q

d hx

�1=e

i)

n

=: (Ehx

�1=e

i)

n

=: L

n

be sorted according to Theorem 9 and D =

P

s

i=1

c

i

P

i

2 Div(F ) with c

i

2Z;1�

i � s.

Before we introduce the notion of a D-reduced integral basis, we de�ne the

following four mappings (embedding, transformation, projection and order func-

tion):

� : F ! L

n

: � =

n

X

j=1

�

j

�

j�1

7! � :=

�

n

X

j=1

�

j

�

j�1

i

�

1�i�n

;

�

D

: L

n

! L

n

: � =

�

1

X

j=m

i

a

i;j

x

�j=e

�

1�i�n

7!



�

D

:=

0

B

B

B

B

B

B

B

@

�

1

X

j=m

i

+c

1

e=e

1

a

i;j

x

�j=e

�

1�i�n

1

.

.

.

�

1

X

j=m

i

+c

s

e=e

s

a

i;j

x

�j=e

�

n�n

s

+1�i�n

1

C

C

C

C

C

C

C

A

;

�

k

: L

n

! E

n

: � =

�

1

X

j=m

i

a

i;j

x

�j=e

�

1�i�n

7! (a

i;k

)

1�i�n

; for k 2Z;

V : L

n

!Z[ f1g : � 7!

n

1 � = 0;

minfk 2Zj �

k

(�) 6= 0g else:

De�nition10. An integral basis !

1

; : : : ; !

n

is called D-reduced, if for all j 2

f0; : : : ; e � 1g the following set is F

q

-linearly independent (by de�nition, ; is

linearly independent):

f�

V (!

D

i

)

(!

D

i

) 2 E

n

j i 2 f1; : : : ; ng with V (!

D

i

) � jmodeg:

Remark. 1) Note, that for � 2 F :

V (�) =

n

min

i=1

V

e

(�

i

) = e

s

min

i=1

v

i

(�)=e

i

= �eB

�

(�):

2) The set

n

M

i=1

F

q

[x]!

i

� L

n

is an F

q

[x]-lattice in L

n

. Therefore, the embedding � can be seen as a function

�eld analogue to the Minkowski map, and the transformation �

D

is a lattice

transformation with V

e

(det(�

D

)) = e

P

s

i=1

n

i

c

i

=e

i

.

With these de�nitions at hand we have (cf. [11]):

Lemma11. Let !

1

; : : : ; !

n

be an integral basis. Then there exist T 2 GL(n;F

q

[x])

and a D-reduced integral basis (~!

1

; : : : ; ~!

n

) = (!

1

; : : : ; !

n

)T . The computation

of T takes at most V

e

(det(!

D

1

; : : : ; !

D

n

))�

P

n

i=1

V (!

D

i

) simple reduction steps.

Lemma12. Let !

1

; : : : ; !

n

be aD-reduced integral basis and set t

i

:= V (!

D

i

)=e 2

Q; 1� i � n. Then the following holds for all t 2 R (with deg(0) = �1):

L(D; t) =

�

n

X

i=1

�

i

!

i

j �

i

2 F

q

[x] with deg(�

i

) � t

i

+ t (1 � i � n)

	

:

Corollary 13. Let L(D; t) and t

i

; 1 � i � n, as above. Then

lj dim

F

q

(L(D; t)) =

n

X

i=1

maxf0; 1 + bt

i

+ tcg

and l dim

e

F

q

(L(D; t)) = dim

F

q

(L(D; t)).



Before we state the reduction algorithm, we de�ne

 : 
 := f(!

D

1

; : : : ; !

D

n

) 2 L

n�n

j !

1

; : : : ; !

n

is an integral basis g �!Z

(�

1

; : : : ; �

n

) 7�! V

e

(det(�

1

; : : : ; �

n

)) �

n

X

i=1

V (�

i

)

and note  (
) � N

0

.

Algorithm14. (D-reduction of an integral basis)

Input: (�

1

; : : : ; �

n

) := (!

D

1

; : : : ; !

D

n

) 2 
.

Output: T 2 GL(n;F

q

[x]) subject to (!

1

; : : : ; !

n

)T being a D-reduced integral

basis.

1: Initialize T  Id

n

(F

q

[x]).

2: Repeat

3: Compute T

0

2 GL(n;F

q

[x]) with V (

e

�

1

) � : : : � V (

e

�

n

) where (

e

�

1

; : : : ;

e

�

n

) :=

(�

1

; : : : ; �

n

)T

0

. Set (�

1

; : : : ; �

n

) (�

1

; : : : ; �

n

)T

0

; T  TT

0

and b 0.

4: For � = 0; : : : ; e� 1

5: Compute k = #fi 2 f1; : : : ; ng j V (�

i

) � �modeg and i

1

< : : : < i

k

with V (�

i

m

) � �mode; 1 � m � k.

6: If ((k > 1) and (f�

V (�

i

m

)

(�

i

m

) 2 E

n

j 1 � m � kg is F

q

-linear

dependent))

7: (reduction step) There exist j 2 f1; : : : ; k�1g and (0; : : : ; 0; �

j

; : : : ;

�

k

)

t

2 F

k

q

; �

j

= 1 with

P

k

m=j

�

m

�

V (�

i

m

)

(�

i

m

) = 0.

Set �  �

i

j

+

P

k

m=j+1

�

m

x

(V (�

i

m

)�V (�

i

j

))=e

�

i

m

and compute T

1

2

GL(n;F

q

[x]) with (�

1

; : : : ; �

i

j

�1

; �; �

i

j

+1

; : : : ; �

n

) = (�

1

; : : : ; �

n

)T

1

.

Set �

i

j

 �; T  TT

1

and b 1.

8: end-If

9: end-For

10: until (b = 0)

11: Output T and terminate.

Remark. The algortihm terminates, because only two situations can occur at the

end of the repeat-loop: Either the ag b is zero, then the algorithm terminates

immediately, or the ag b equals one, then a reduction step has taken place

and the  -value of the current vector (�

1

; : : : ; �

n

) has decreased. Furthermore,

 (
) � N

0

and  (�

1

; : : : ; �

n

) = 0 implies that the corresponding integral basis

is D-reduced. Therefore, the algorithm terminates after at most  (!

D

1

; : : : ; !

D

n

)

steps.

5 Applications of Reduced Integral Bases

We are now able to state applications of D-reduced integral bases when P

1

is

tamely rami�ed in F . We start with 0-reduced integral bases, i.e. D-reduced

integral bases with respect to D = 0 2 Div(F ):



Theorem15. Let !

1

; : : : ; !

n

be a 0-reduced integral basis with B(!

1

) � : : : �

B(!

n

). Then M

i

= B(!

i

); 1 � i � n.

Remark. Considering lattices � in R

n

; n > 4, there are examples that bases

cannot be chosen to achieve the successive minima of � with respect to k � k

2

(cf.

[9, Chapter 3, Example (3.31) and Theorem (3.32)]).

According to Dirichlet the structure of the unit group is given by

U

F

= TU

F

� h"

1

i � : : :� h"

r

i

�

=

F

�

q

l

�Z

r

;

where TU

F

is the group of the torsion units, r denotes the unit rank and

"

1

; : : : ; "

r

are fundamental units.

The torsion units are exactly the elements of

e

F

�

q

�

=

F

�

q

l

, and recalling Lemma

7 we have

Lemma16. Let !

1

; : : : ; !

n

be a 0-reduced integral basis with B

�

(!

1

) � : : : �

B

�

(!

n

). Then 0 = B

�

(!

1

) = : : : = B

�

(!

l

) < B

�

(!

l+1

).

Remark. Note that l depends only on F=F

q

(and not on F=F

q

(x)). Therefore,

we can calculate l via a 0-reduced integral basis when there is at least one

place P 2 P(F ) with deg(P ) = 1 which is tamely rami�ed (cf. remark (3) after

Theorem 9).

In order to compute fundamental units we adapt the \relation method" from

number �elds. Therefore, we construct elements of (small) bounded norm which

can be done easily because of

Lemma17. Let !

1

; : : : ; !

n

be a 0-reduced integral basis and t 2 R. Then � 2

L(0; t) implies deg(N

F=F

q

(x)

(�)) � tn.

An easy consequence of the product formula is

Lemma18. Let D =

P

s

i=1

c

i

P

i

with

P

s

i=1

c

i

f

i

= 0 (i.e. deg(D) = 0). Then we

have the following equivalence:

� 2 L(D; 0)

�

() � 2 U

F

and v

i

(�) = �c

i

(1 � i � s);

and dim

e

F

q

(L(D; 0)) 2 f0; 1g.

Remark. The last lemma allows us to test whether there is an " 2 U

F

with

prescribed v

1

("); : : : ; v

s

("). This is particulary useful when having a unit " 2 U

F

at hand and trying to decide whether there exists an � 2 U

F

with �

m

= " for

m 2 N: First, we test mjv

i

("); 1 � i � s. After a successful test, we compute

L(D; 0) for D =

P

s

i=1

(v

i

(")=m)P

i

. If dim

e

F

q

(L(D; 0)) = 0, there is no m-th root

of "; if dim

e

F

q

(L(D; 0)) = 1, the l basis elements are m-th roots of " modulo

torsion units, i.e. modulo

e

F

�

q

.

6 Examples

In this section we give illustrative examples of the results mentioned above.

First, we consider F = F

5

(x; �), where

f(x; �) = �

3

+ (4x

3

+ 4x

2

+ 2x+ 2)�

2

+ (3x+ 3)�+ 2 = 0:



Then P

1

splits into P

1

and P

2

with e

1

= f

1

= 1 and e

2

= 2; f

2

= 1. Therefore,

s = 2, the signature is (1; 1; 2; 1), 5 - e = 2 and (�

1

; �

2

; �

3

) = (�

1;1

; �

2;1

; �

2;2

)

have Puiseux expansions in F

5

2
hzi, where z := x

�1=2

. With a suitable primitive

element w 2 F

�

5

2

, we have

�

1

= z

�6

+ z

�4

+ 3z

�2

+ 3 + 2z

4

+ 4z

8

+ z

12

+ z

16

+ : : :

�

2

= w

15

z

3

+ 4z

4

+ w

15

z

5

+w

15

z

7

+ 3z

8

+w

15

z

9

+ : : :

�

3

= w

3

z

3

+ 4z

4

+w

3

z

5

+w

3

z

7

+ 3z

8

+ w

3

z

9

+ : : :

For the integral basis !

1

:= 1; !

2

:= �; !

3

:= �

2

, we obtain

B

�

(!

1

) = 0; B

�

(!

2

) = 3; B

�

(!

3

) = 6

and for a 0-reduced integral basis ~!

1

:= 1; ~!

2

:= (2x

3

+ 2x

2

+ x + 1)� +

3�

2

; ~!

3

:= (4x

3

+ 4x

2

+ 2x)�+ �

2

:

B

�

(~!

1

) = 0; B

�

(~!

2

) = 3=2; B

�

(~!

3

) = 3:

This implies 1;

p

125; 125 being the successive minima of o

F

with respect to B

and l = [

e

F

5

: F

5

] = 1. Furthermore, there is an element " 2 U

F

with v

1

(") = 3 =

�v

2

("). Since dim

F

q

(L(P

1

� P

2

; 0)) = 0 there is no 3-rd root of ". Therefore, "

is a fundamental unit and the regulator is 3.

This example took less than 4 seconds on a Pentium 90 with 16 MB RAM

and a modi�ed KASH software (cf. [5]).

Now we compute 0-reduced integral bases for all polynomials of the form

f(x; y) = y

3

+ a

2

(x)y

2

+ a

1

(x)y + a

0

(x) 2 F

3

[x; y]

with deg(a

i

) 2 f�1; 0; 1g; 0� i � 2, where the associated global function �eld

F=F

q

(x) is a separable extension of degree 3 in which P

1

is tamely rami�ed.

In the following table the values

� :=

n

X

i=1

B

�

(!

i

);

e

� :=

n

X

i=1

B

�

(e!

i

); �� := � �

e

�;

M :=

n

max

i=1

B

�

(!

i

);

f

M :=

n

max

i=1

B

�

(e!

i

); �M :=M �

f

M:

are given with respect to the signature of all 428 polynomials (out of 3

6

= 729)

satisfying the restrictions mentioned above. Here !

1

; : : : ; !

n

2 o

F

denotes an

integral basis obtained with a modi�ed Round-Two method (cf. [8, Ch. V.2]),

and e!

1

; : : : ; e!

n

2 o

F

is a 0-reduced integral basis.

The computations have been carried out on IBM RS6000 workstations with

64 MB RAM using a modi�ed KASH software. The value T in the last column

is the average running time in seconds. Values in () are absolute numbers.



Signatur [E : F

3

] � M

e

�

e

M �� �M T

(1; 3) (8) 3 0 0 0 0 0 0 0,017

(1; 1; 1; 2) (144) 2 3 2 2 1 1 1 3,028

(1; 1; 2; 1) (204) 1 (102)

2 (102)

3/2 (96)

3 (108)

1 (96)

2 (108)

3/2 1 0 (96)

3/2

(108)

0 (96)

1 (108)

7,672

(1; 1; 1; 1; 1; 1)

(72)

1 3 2 2 1 1 1 5,736

Finally, we compute a fundamental unit of the quintic �eld de�ned by

f(x; y) = y

5

+ (2x+ 3)y

2

+ 3y + 1 2 F

5

[x; y]:

In this example the signature is (2; 1; 3; 1) and � is a fundamental unit with

v

1

(�) = �v

2

(�) = 1. The computation took 28 seconds on one of the IBM

workstations mentioned above.
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