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1 Introduction

Global fields F' are either finite extensions of Q@ or of I, (z), a rational function
field in one variable over a finite constant field. The integral closure op of R =7
or R = T, [x], respectively, in F' is a Dedekind domain and a free R-module of
full rank, i.e. op = @?:1 Ruw;, where n denotes the degree of the extension and
w;i, 1 <7 < n, an integral basis.

In case F' being a number field, op can be identified via the Minkowski map
with a lattice in the Hilbert space R™. The most famous and efficient algorithm
for basis reduction, the LLL-algorithm (cf. [6]), uses the existence of the inner
product in R™ extensively in a sophisticated way.

Unfortunately, when F' is a function field, there is no identification of op with
a lattice in a Hilbert space because all valuations on F' are discrete. Therefore,
it 1s impossible to adapt the LLL-reduction to the function field case.

In this paper we sketch a reduction algorithm for integral bases in function
fields where the infinite place Py, is tamely ramified. This algorithm allows us,
e.g., to compute an integral basis wy,...,wy € op with B(w;) = M;,1 < i < n,
where B is a special length function on F and the M;’s are generalized successive
minima of op with respect to B. Furthermore, we give some applications to the
unit group computation of op in fields of degree > 3.

For proofs and a more detailed description we refer to a forthcoming paper.

2 Preliminaries

Let ¢ :== p” be a prime power, x transcendental over IF, and

F :=T,(z,p) with f(z,p) =0,

where p € m and f € IFy [z, y] is an irreducible polynomial with deg, (f) = n
which is monic and separable in y.

The exact constant field IF, is defined to be the set of all elements of F' which
are algebraic over T,. f}f"q is a finite extension of F, with [E] (Fl=:1n.

For K € {F,(z), F'}, we denote by P(K) (Div(K)) the set of all places (di-
visors) of K. With P € P(K) we associate the corresponding valuation ring
Op, the surjective valuation vp : K — 7 U {oo} and the absolute value
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|- |p := ¢~'P0), ¢ := 0. The quotient O@p/P is isomorphic to a finite ex-
tension of F,. We define deg(P) to be the degree of this extension.

Especially, when K = F,(x) we set O := {g/h € Fy(z) | g,h € Fy[z], h ;7é
0,deg(g) < deg(h)} and denote by Py (= 27 0), Voo and | - |oo 1= g~V
the corresponding place, surjective valuation and absolute value, respectlvely
By or (0F o) we denote the integral closure of Fy[x] (O ) in F. Furthermore,
we set Up 1= o%.

Then there exists s € {1,...,n}, and pairwise distinct Pp,..., P, € P(F)
with Pogopeo = H | PP, where e; := e(P;|Ps) is the ramification index and
fi := f(Pi|Pso) the relatlve degree of P; over P, (1 < i < s). We enumerate
P;,e; and f; subject to

ei <ejandife; =e¢; : f < fjforalll1 <i<j <5,

and call the 2s-tuple (e, f1;...; €5, fs) € N?* the signature of F//I, ().
Finally, we set e := lem(ey,...,e5), n; := e;f; and denote by v; := vp,
(|- ]i :=q7"), ¢~ := 0) the extensions of v (|- |oo) to F, (1 <i < s).

3 Geometry of Numbers

As in the number field case the efficiency of algorithmic methods applied to
op strongly relies on the choice of a “good” integral basis with respect to a
special length function. In this section we generalize the notion of length func-
tions, lattices and successive minima given by K. Mahler [7]. We start with some
definitions.

Definition1. For a finite extension E/F, and k € N let

B = { Y e/ |meZ,q € B)

denote the field of Puiseux series in 2= 1/* and by
) —1/k = - —i/k {oo a=0,
Vi o E{a™ ") — ZU{oo} : Zam — Lmin{i € Z | a; # 0} else,

a surjective valuation on E{x~!/*%).

For the remaining of the section we fix E/F, with d :=[F: F,] € N, k € N
and set L := E(z~!/*).

Definition2. A function G : L? — R2Y (G:F — }RZO) with
1. Gla)=0< a =0,

2. G(ha) = MG(@) (Ga) = Ao Gla) and
3. Gla+ 8) <max{G(a),G(B)}



forall A € Lo, € L (A € Fy(z), e, f € F) is called a length function on L”
(F).

Definition3. Let R be a subring of E[z'/*] and M € GL(n,L). Then A =
A(M,R) .= {M«a | o € R} is called an R-lattice in L™.

With these definitions at hand we remark an analogue to lattices in R™.

Remark. The ring R is a discrete subset of L equipped with the topology induced
by the absolute value ¢=%*(). Therefore, an R-lattice A C L™ is a discrete,
additive subgroup of L™ with the product topology.

We generalize the notion of the successive minima.

Definition4. Let R be a subring of E[z'/%], A C L” an R-lattice and G a
length function on L”. For i € {1,... ,n} the value

Mi(A, R,G) := min{ A € R | there exist R-linear independent
ar,...,a; € Awith G(a;) <A, 1<j<i}

is called the i-th successive minimum of A (with respect to R and G).

Replacing G by a length function on F and A by op, we define for R := F,[z]
analogously the i-th successive minimum M;(op, R, G) of op (with respect to R
and ).

In [7], K. Mahler proved that E[z'/*]-lattice bases can always be chosen to
achieve the successive minima.

Theorem 5. Let G be a length function on L, M € GL(n,L), R := Elz'/",
A= A(M,R) and M; := M;(A, R, G), 1 <i<n.
Then there exists a T € GL(n, R) with Vi(det T) =0 and
G(b;) = M;, 1<i<mn, where (by,...;b,) = MT.

We now consider a special length function which will become important con-
cerning algorithms for global function fields.

Definition and Lemma 1. The function
B:F—R2": o — msalx|oz|3/e’
1=

is a length function on F' with B(-) = ¢2" ) where

B*:F—{afe|lacZ}U{—0c0}:ar— —msi{wi(a)/ei and B*| x > 0.
1= P



Remark. The analogue of B in number fields is as follows: Let K = Q(r) with
g(7) = 0 where 7 € Q and ¢ € Z[t] is a monic, irreducible polynomial of degree
n. The roots m,..., 7, of ¢ are sorted according to 7; € R, 1 < ¢z < ry, and
Ti = Tigr, € C\R,7r1+1 < i < ry+re with suitable 7, ro € Ng. Then |-|: @ — R
has 473 non-equivalent extensions, namely |-()], 1 <4 < 71, and |-(D]? 1141 <
i < 71 + 17y where -() denotes the the mapping onto the i-th conjugate (cf. [13,
Proposition 5-1-2.]). By definition, f; = 1,1 < i <ry 4+ re, ¢ = 1,1 <i < ryp,
and e, =2, + 1 < ¢ <ry+ra (cf. [3, p. 57]). Therefore, the analogue of B in
number fields takes the form: a +— max;t"* |o{))| for o € K.

Concerning the successive minima M; := M;(or,Fy[z], B),1 < i < n, we
obtain

Theorem 6. There exists an integral basiswy, ..., wy € op with M; = B(w;),1 <
1< n.

When P, is tamely ramified in F'i.e. p{ e, we will compute an integral basis
satisfying Theorem 6 in section 5.

The structure of the successive minima depends on the exact constant field
as we can see from

Lemma 7. Forl= [E} ] we have

1IM1:...IM[<MH_1I...IMQIS...SMH_I_HI...Mn.

4 Integral Basis Reduction

For many constructive problems concerning F' it 1s important to compute ele-
ments o € F with prescribed lower bounds for vi(«),. .., vs(«) or, equivalently,
elements with upper bounds for ||, ..., |as.

When we are dealing with number fields, this corresponds to the computa-
tion of elements with prescribed upper bounds for the absolute values of the
conjugates; usually, this is done by enumeration of a weighted positive definite
quadratic form (cf. [9, Chapter 5, Lemma (3.11)]).

For function fields, we do this in a different way, as we will show in the sequel.
We start with the definition of a suitable Riemann-Roch space which goes back
to W. M. Schmidt [11]:

Definition8. For D = Y7, ¢;P; € Div(F) with ¢; € Z,1 < i< s, and ¢t € R

we define the ﬁq—vector space
L(D,t) ={a€op |v(a) > —¢; —te; (1<i<s)}.

Remark. By the product formula, we have £(D,t) = {0} whenever Y;_, fi(—c;—
tei) > 0.



For function fields over C(z) there is a deterministic algorithm for deter-
mining a basis for £(D,?) (cf. [11]) which is based on [2]. This algorithm uses
Puiseux expansions of all roots of f over P., which causes no problems since the
constant field C has characteristic zero and is algebraically closed.

Before we can give a suitable modification of the algorithm which works over
finite constant fields, we first have to deal with Puiseux expansions of the roots
1, .-, pn of f over Py .

Recalling the definition of the fields of Puiseux series from the last section
we can describe the roots of f in the case when P., is tamely ramified:

Theorem 9. If pte, then there exist
dy,...,dp €1, .. ,n}, de{l,... lem(dy,...,ds)}
and an enumeration of p1, ..., pn with

(pla .. ;pn) = (pl,la s Pl P21y P2 00y -0 -5 Ps,ly - 'aps,”s)

such that p; ; € Fya (x—l/e,> C }qu<x—1/e>’ 1 < j < ny, are Puiseuxr expansions
at P, 1 <i < s. Furthermore, ¥ a contains all e;-th roots of unity, 1 <i <'s.

Remark. 1) The Puiseux expansions can be obtained via the Newton-Puiseux
method (cf. [12, Chapter TV]).

2) If p | e, then the expansions obtained via the Newton-Puiseux method are
not necessarily of Puiseux type but generally of Hamburger-Noether type (cf. [1,
Chapter I1I], [10] and [4]).

3) If we are not interested in F/TF,(x) but in F/F,, and there is a place
P € P(F,(z)) of degree one which is tamely ramified, it is possible to interchange
the places P, and P. Of course, this leads to a transformation of z into an
#' and we study F/TF,(z') instead of F/TF,(x) but now with tamely ramified
P, € B(E,(x").

From now on let

(Prevspn) = (Pt o pon) € (Bya (@™ /o))" =2 (Bla=™" )" =2 L

be sorted according to Theorem 9 and D = >"7_, ¢;P; € Div(F) with¢; € Z,1 <
1 < s.

Before we introduce the notion of a D-reduced integral basis, we define the
following four mappings (embedding, transformation, projection and order func-
tion):

P —=L"a= Z/\jﬂi_l o= (Z’\J'pg_l)1<i<n’
j=1 Jj=1 o
Lo —1hp=( Z aiij_j/€)1<z’<n =

Jj=mi
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( Z ai,jl’_j/e)gignl

j=mi+ecie/er

D .
pY = : )
(o]
Cop—ile
( Z @i j T / >n—ns+1§i§n
j=mi+tecsefes
(o]
Op :L" — E" : 8= ( Z aivjx_]/€)1<i<n — (ai,k)lgigna for k € Z,
J=m; T

. Tn . o0 g8 =0,
Vb HZU{OO}'6H{min{kEZ|9k(ﬁ);éO}else.

Definition10. An integral basis wy,...,w, is called D-reduced, if for all j €
{0,..., e — 1} the following set is F,-linearly independent (by definition, @ is
linearly independent):

{HV@P)(@D) eE"|ie{l,..., n} with V(@D) = jmode}.

Remark. 1) Note, that for o € F:

V(a)= H;linVe(ozi) = eririi{wi(a)/ei = —eB*(a).

=1

2) The set
P v, l2]w: c L
i=1

is an F,[z]-lattice in L". Therefore, the embedding * can be seen as a function
field analogue to the Minkowski map, and the transformation -
transformation with V,(det(-?)) = ¢ Ele nicife;.

1s a lattice

With these definitions at hand we have (cf. [11]):

Lemma 11. Letwy, ... wy be an integral basis. Then there exist T € GL(n, T, [z])
and a D-reduced integral basis (&1, ..., @n) = (w1,...,wn)T. The computation
of T takes at most V. (det(@? ... @wP)) - S V(@P) simple reduction steps.
Lemma 12. Letws,...,w, be a D-reduced integral basis and sett; := V(&P )/e €
0,1< i< n. Then the following holds for allt € R (with deg(0) = —o0 )

L(D,t) = {> hiwi | A € Tyfa] with deg(A\) < ti+t (1<i<n)}.

i=1

Corollary 13. Let L(D,t) and t;,1 <i < n, as above. Then

l| dimy (L£(D,t)) = zn:max{o, 14 |t +1]}

i=1

and ldimﬁrq(E(D,t)) = dimr, (£(D,1)).



Before we state the reduction algorithm, we define

Y2 :={@,.. @) e ™" |wi,...,w, is an integral basis } — 7

’ n

(61, 6n) — Vo(det(y, ..., dn)) — Z V(i)

and note (£2) C Ny.

Algorithm 14. (D-reduction of an integral basis)

Input: (¢1,...,¢n) = @P,.... @) e 0.

Output: T € GL(n,T,[x]) subject to (w1,...,wn)T being a D-reduced integral
basis.

o Initialize T — 1d, (T, [2]).
Repeat _ _ _ _
3: Compute Ty € GL(n,Fylz]) withV(e1) < ... < V(gy) where (¢1,...,¢5) :=
(¢1, ey ¢n)T0 Set (¢1, ey ¢n) — (¢1, ey ¢n)T0,T — TTO and b — 0.
4: Fork =0,...,e—1
5 Compute k = #{i € {1,...,n} | V(¢;) = kmode} and iy < ... < iy
with V(¢;,) = kmode, 1 <m < k.
6: If ((k > 1) and ({0v(g, 1(0i,,) € E" | 1 < m < k} is Fy-linear
dependent))
7: (reduction step) There exist j € {1,...,k—1} and (0,...,0,¢;, ...,
ap)' € FE o =1 with Ei@:j amvig;, (¢i,) =0.
Set & — ¢4, +E£1:j+1 Ozml‘(vw’m)_vw’i))/eq/)im and compute T} €
GL(TL, Fq[$]) with (¢1a ey ¢ij—1a€a ¢ij+1a o a¢n) = (¢1a T ¢n)T1
Set ¢ij — &ET «—TT) and b — 1.
8: end-If
9: end-For
10: until (b=0)
11: Output T and terminate.

s I

Remark. The algortihm terminates, because only two situations can occur at the
end of the repeat-loop: Either the flag b is zero, then the algorithm terminates
immediately, or the flag b equals one, then a reduction step has taken place

and the ¢-value of the current vector (¢1,...,¢y,) has decreased. Furthermore,
$(2) C Ny and ¥(¢1,...,¢,) = 0 implies that the corresponding integral basis
18 D-reduced. Therefore, the algorithm terminates after at most 1/)(@{7, ce wf)
steps.

5 Applications of Reduced Integral Bases

We are now able to state applications of D-reduced integral bases when P, is
tamely ramified in F'. We start with O-reduced integral bases, i.e. D-reduced
integral bases with respect to D = 0 € Div(F):



Theorem 15. Let wy,...,wy be a O-reduced integral basis with B(wy) < ... <
B(wy). Then M; = B(w;), 1 < i< n.
Remark. Considering lattices A in R™ n > 4, there are examples that bases
cannot be chosen to achieve the successive minima of A with respect to || -||2 (cf.
[9, Chapter 3, Example (3.31) and Theorem (3.32)]).

According to Dirichlet the structure of the unit group is given by

Up =TUp x {e1) x ... x (&) 2Ty x L7,

where TUp 1s the group of the torsion units, r denotes the unit rank and
€1,...,&r are fundamental units. B

The torsion units are exactly the elements of [ = qu, , and recalling Lemma

7 we have
Lemma 16. Let wy, ... ,wy be a O-reduced integral basis with B*(wy) < ... <
B*(wp). Then 0 = B*(wy1) = ... = B*(w;) < B*(wi41)-
Remark. Note that { depends only on F/TF, (and not on F/F,(z)). Therefore,
we can calculate [ via a O-reduced integral basis when there is at least one
place P € P(F') with deg(P) = 1 which is tamely ramified (cf. remark (3) after
Theorem 9).

In order to compute fundamental units we adapt the “relation method” from
number fields. Therefore, we construct elements of (small) bounded norm which
can be done easily because of
Lemma 17. Let wq, ... ,wy, be a 0-reduced integral basis and t € R. Then o €
L£(0,t) implies deg(Np1,(o)(a)) < tn.

An easy consequence of the product formula is
Lemma 18. Let D = Ele c; Py with Ele e fi =0 (ie. deg(D) = 0). Then we

have the following equivalence:
a € L(D,0) <= a € Up and vi(e) = —¢; (1 <i<s),

and dimg, (£(D,0)) € {0,1}.

Remark. ?I‘he last lemma allows us to test whether there i1s an ¢ € Up with
prescribed vi(g),...,vs(e). This is particulary useful when having a unit ¢ € Up
at hand and trying to decide whether there exists an n € Up with n™ = ¢ for
m € N: First, we test m|v;(¢),1 < i < s. After a successful test, we compute
L(D,0) for D =3"_,(vi(e)/m)P;. If dinrfq(E(D, 0)) = 0, there is no m-th root
of e; if dinrfq(E(D,O)) = 1, the [ basis elements are m-th roots of ¢ modulo

torsion units, i.e. modulo .

6 Examples

In this section we give illustrative examples of the results mentioned above.
First, we consider F' = F5(x, p), where

fle,p)=p® + (42 + 42> + 22+ 2)p* + Bz + 3)p+2=0.



Then P, splits into P; and P, with e; = f; = 1 and e5 = 2, fo = 1. Therefore,

s = 2, the signature is (1,1;2,1),5 1 e = 2 and (p1, p2,p3) = (p1,1,p2,1, p2,2)
have Puiseux expansions in F52{z), where z := 2~ 1/2_ With a suitable primitive

element w € }F?Q, we have

pr=2"0 4 437 3 2 A4
po = w2+ 4zt 4w 4 w2 4328 4wt

ps = w323 4420 4w P T 438 B 4
For the integral basis wy := 1, wy:=p, w3 := p?, we obtain
B*(w1) =0, B*(w2)=3, B*(ws)=256

and for a O-reduced integral basis @1 = 1, @3 := (223 + 227 + z + 1)p +
3p?,  @3:= (423 + 42 + 22)p + p%:

B*(&1) =0, B*(@2)=3/2, B*(@s)=3.

This implies 1, V125,125 being the successive minima of op with respect to B
and [ = [Fs : F5] = 1. Furthermore, there is an element ¢ € Up with vi(¢) =3 =
—v2(¢). Since dimy (L(Py — P2,0)) = 0 there is no 3-rd root of ¢. Therefore, ¢
is a fundamental unit and the regulator is 3.

This example took less than 4 seconds on a Pentium 90 with 16 MB RAM
and a modified KASH software (cf. [5]).

Now we compute 0-reduced integral bases for all polynomials of the form

f(x,y) = v* + as(@)y® + a1 (x)y + ao(x) € T3]z, Y]

with deg(a;) € {—00,0,1},0 < ¢ < 2, where the associated global function field
F/F,(x) is a separable extension of degree 3 in which P, is tamely ramified.
In the following table the values

T= Br(wi), L= B(@), AV =YX - 1,
i=1 i=1
M = mfale*(wi), M= mﬁalXB*(fEi), AM = M — M.

are given with respect to the signature of all 428 polynomials (out of 3% = 729)

satisfying the restrictions mentioned above. Here wq,...,w, € op denotes an
integral basis obtained with a modified Round-Two method (cf. [8, Ch. V.2]),
and Wy, ...,w, € op is a O-reduced integral basis.

The computations have been carried out on IBM RS6000 workstations with
64 MB RAM using a modified KASH software. The value 7" in the last column
is the average running time in seconds. Values in () are absolute numbers.



Signatur [F:Ts] |X M X M AX AM T
1,3) (3) 3 0 0 0 0 0 0 0,017
(1,1;1,2) (144) |2 3 2 2 1 1 1 3,028
(1,1;2,1) (204) |1 (102) |3/2 (96) |1 (96) |3/2 1 0(96) |0 (96) [7,672
2 (102) |3 (108) |2 (108) 3/2 1 (108)
(108)

O,LLLLD) |1 3 2 2 1 1 1 5.736
(72)

Finally, we compute a fundamental unit of the quintic field defined by

fle,y) = 9" + (22 +3)y" + 3y + 1 € Fs[z, y].

In this example the signature is (2,1;3,1) and p is a fundamental unit with
v1(p) = —wva(p) = 1. The computation took 28 seconds on one of the IBM
workstations mentioned above.
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