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We generalize a theorem of Voronin [4℄ on the joint distribution of non-zero

values of Dirihlet L-Funtions to Artin-L-Funtions. As a onsequene we get

the di�erential independene of �-funtions of normal extensions of Q.

1. MAIN THEOREM

We prove the following statement on Artin-L-series over Q:

Theorem 1.1. Let K be a �nite Galois-extension of Q and �

1

; : : : ; �

n

lin-

early independent haraters of the group G := Gal(K=Q). Let k := #G

and f

1

(s); : : : ; f

n

(s) be holomorphi funtions on jsj < r and ontinuous on

jsj � r, where r is a �xed number 0 < r <

1

4k

. Further suppose f

j

(s) 6= 0

on jsj � r.

Then for every � > 0 there is a set A

�

� R suh that

lim inf

T�!1

vol(A

�

\ (0; T ))

T

> 0

and for j = 1; : : : ; n

1
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8

t2A

�

8

jsj�r

: jL(s+ 1�

1

4k

+ it; �

j

)� f

j

(s)j < �;

where L(z; �

j

) denotes the orresponding Artin-L-series.

As a onsequene we �nd onditions for the funtional independene of

Dedekind-�-funtions (Theorems 4.6 and 4.7) and the di�erential indepen-

dene of Dedekind-�-funtions (Theorem 4.8).

2. PREPARATION

Denote by P the set of rational primes.

Definition 2.1. Suppose that

F (s) =

Y

p2P

f

p

(p

�s

)

where f

p

(z) is a rational funtion and the produt onverges absolutely for

Re(s) > 1.

Then for any �nite set M � P of primes and for any � 2 R

P

we de�ne

F

M

(s; �) :=

Y

p2M

f

p

(p

�s

e

�2�i�

p

):

Lemma 2.1. Suppose that F

1

(s); : : : ; F

n

(s) are analyti funtions whih

are represented by produts

F

j

(s) =

Y

p2P

f

p;j

(p

�s

)

for Re(s) > 1,where f

p;j

(z) = 1 +

1

P

m=1

a

(m)

p;j

z

m

are rational funtions of z

without poles in the dis jzj < 1. For all � > 0 there are onstants (�) > 0

with



VALUE DISTRIBUTION OF ARTIN-L-SERIES 3

ja

(m)

p;j

j � (�)p

m�

:

Further suppose that they have an analyti ontinuation to the plane

Re(s) > 1� 1=2k with at most one simple pole at s = 1.

Assume that

1

T

T

Z

�T

jF

j

(� + it)j

2

dt

is uniformly bounded for � 2 (�; 1) and T 2 R

+

, if � 2 (1�

1

2k

; 1) is �xed.

Let M

1

�M

2

� : : : be �nite sets of primes with P =

S

1

j=1

M

j

.

Suppose lim

j�>1

F

j;M

j

(s; �

j

) = f

j

(s) uniformly in js� (1�

1

4k

)j � r <

1

4k

.

Then for any � > 0 there exists a set A

�

� R suh that for all j and

all t 2 A

�

max

js�(1�

1

4k

)j�r

jF

j

(s+ it)� f

j

(s)j < �

and

lim inf

T�!1

vol(A

�

\ (0; T ))

T

> 0:

Corollary 2.1. Let G

m

(s) :=

Q

b=N

m

b=1

F

m;b

(s)=

Q

b=N

�

m

b=1

F

�

m;b

(s). Suppose

that the funtions F

m;b

(s); F

�

m;b

(s) satisfy the onditions of Lemma 1.

Assume that lim

j�>1

G

m;M

j

(s; �

j

) = f

m

(s) and lim

j�>1

F

m;b;M

j

(s; �

j

; ) = f

m;b

(s).

Under the further ondition that max

m;b;s

jf

m;b

(s)j > 0 and

f

m

(s) =

Q

b=N

m

b=1

f

m;b

(s)=

Q

b=N

�

m

b=1

f

�

m;b

(s) for jsj � r we have:

For any � > 0 there is a set B

�

� R suh that for all m and all t 2 B

�

max

js�(1�

1

4k

)j�r

jG

m

(s+ it)� f

m

(s)j < �
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and

lim inf

T�!1

vol(B

�

\ (0; T ))

T

> 0:

Proof. The proof of the lemma is ompletely analogous to Voronin's proof

in [4, p.256℄.

Lemma 2.2. Let 0 < r <

1

4k

and �

1

; : : : ; �

n

be linearly independent non-

abelian haraters of G := Gal(K=Q) where K is a �nite normal algebrai

extention of Q. Let k := #G.

Suppose that f

1

(s); : : : ; f

n

(s) are analyti for jsj < r and ontinuous for

jsj � r and not zero on the dis jsj � r. Then for every pair � > 0 and

y 2 R

+

there exists a �nite set of primes M ontaining all primes smaller

than y and � 2 R

P

suh that:

n

max

j=1

max

jsj�r

jL

M

(s+ 1�

1

4k

; �

j

; �)� f

j

(s)j < �

For the proof we need the following theorem on onditionally onvergent

series

Theorem 2.2. [4, p.352℄ Suppose that a series of vetors

1

P

n=1

u

n

in a real

Hilbert spae H satis�es

1

P

n=1

ku

n

k

2

< 1 and for every e 2 H with e 6= 0

the series

1

P

n=1

hu

n

; ei onverges onditionally.

Then for any v 2 H there is a permutation � of N so that

1

P

n=1

u

�(n)

= v in

the norm of H.

and a theorem of Artin:

Theorem 2.3 (Artin). [2, p.122℄ If �(C

j

; x) is the number of primes in

the lass C

j

smaller than x then: �(x;C

j

) =

h

j

k

x

R

2

dt

log t

+ O(xe

�a log

1=2

x

)

where a is some positive onstant, k = #G and h

j

:= #C

j

.
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Theorem 2.4 (Paley-Wiener). [1, p.166℄ Let F be an entire funtion.

Then the following statments are equivalent:

(1)

Z

1

�1

jF (x)j

2

dx <1 and lim sup

z2C

jF (z)e

�(�+�)jzj

j <1 for every � > 0

(2) there is a funtion f 2 L

2

(�;��) suh that F (z) =

1

p

2�

Z

�

��

f(u)e

iuz

du

Theorem 2.5 (Markov). [1, p.314℄ Let P be a polynomial of degree � n.

Then max

jxj�1

jP

0

(x)j � n

2

max

jxj�1

jP (x)j:

Proof (of Lemma 2.2).

Choose  > 1 suh that 

2

r <

1

4k

and

8

j

: max

jsj�r

jf

j

(s)� f

j

(s=

2

)j < �

Beause f

j

(s) 6= 0 we an write

f

j

(s) = exp(g

j

(s)) for some g

j

(s) analyti in jsj < 

2

r:

Hene it is suÆient to prove the Lemma for the logarithms of the fun-

tions.

For Artin-L-series L(s; �

j

) the Euler-fators are de�ned by

1= det(E

k

j

��

j

(�

p

)p

�s

), where �

p

is one of the onjugate Frobenius-automorphisms

over p 2 P and �

j

: G �! GL

k

j

(C ) is a representation of G with

�

j

(�) = trae(�

j

(�)).

For the Euler-fators of L

M

(s

0

; �

j

; �) we get:

� logL

p

(s

0

; �

j

; �) =

trae(�

j

(�

p

)) exp(�2�i�

p

)

p

s

0

+

X

m�2

a

m;p

p

�ms

0
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The �rst term is

�

j

(�

p

) exp(�2�i�

p

)

p

s

0

. Therefore

� logL

M

(s

0

; �

j

; �) =

X

p2M

�

j

(�

p

)e

�2�i�

p

)

p

s

0

+

X

p2M

X

m�2

a

m;p

p

�ms

0

The seond term is a uniformly and absolutely onvergent series for all

primes in Q.

We de�ne a real Hilbert spae H

(R)

n

of holomorphi funtions on the dis

jsj � R with the salar produt

h(h

j

)

n

j=1

; (f

j

)

n

j=1

i := Re

Z

jsj�R

n

X

j=1

f

j

(s)h

j

(s)d�dt:

Set R := r ( < 1) and �

p

(s) := (

�

j

(�

p

) exp(�2�i�

p

)

p

s

0

)

n

j=1

, where

s

0

= s+ 1�

1

4k

with jsj � R.

Denote the di�erent onjugay lasses of the group G by C

1

; : : : ; C

N

. Obvi-

ously n � N sine N is the dimension of the vetorspae of lass funtions

on G.

Denote the di�erent prime lasses by P

j

:= fp j �

p

2 C

j

g.

To de�ne �: In the natural order of the sets P

j

suh that

p

j;1

< p

j;2

< p

j;3

: : : set �

p

j;l

:=

l

4

. Thereby �

p

is de�ned for all primes.

We will use the above Theorem 2.2 on onditionally onvergent series in

Hilbert spaes.

We only need to show that the series �

p

; p 2 P ful�lls the onditions of this

theorem:

P

p2P

k�

p

k

2

� kn

P

p2P

p

1

2k

�2+2R

<1. (obviously

1

2k

� 2 + 2R < �(1 + �

1

) for

some small �

1

)

For e we an hoose any '(s) 2 H

R

n

with k'(s)k := h'(s); '(s)i

1=2

= 1.

Now we have to show that

X

p2P

h�

p

; '(s)i
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is onditionally onvergent or equivalently,

that there exist two sets of primes P

+

and P

�

suh that

8

p2P

+

: h�

p

; '(s)i > 0,

P

p2P

+

h�

p

; '(s)i =1, and

P

p2P

�

h�

p

; '(s)i = �1, 8

p2P

�

: h�

p

; '(s)i < 0.

We ompute:

h�

p

; 'i = Re

Z

jsj�R

n

X

j=1

�

p;j

(s)'

j

(s)d�dt

= Re

Z

jsj�R

n

X

j=1

�

j

(�

p

)e

�2�i�

p

p

�s

0

'

j

(s)d�dt

= Re

�

e

�2�i�

p

Z

jsj�R

p

�(s+1�

1

4k

)

�

n

X

j=1

�

j

(�

p

)'

j

(s)

�

d�dt

�

It follows that

lim

p�>1

jh�

p

; 'ij = 0:

Sine the haraters �

j

are linearly independent, there is a lass C

l

in G

suh that '

0

:=

n

P

j=1

�

j

(�

p

)'

j

(s) 6� 0 for all �

p

2 C

l

.

As the funtions '

j

are holomorphi in the dis jsj � R, we have

'

0

(s) =

1

P

m=0

�

m

s

m

.

For p 2 C

l

we have

h�

p

; 'i = Re

�

e

�2�i�

p

Z

jsj�R

exp

�

� log(p)(s+ 1�

1

4k

)

�

'

0

(s)d�dt

= Re

�

e

�2�i�

p

�(log p)

�

Here �(x) :=

R

jsj�R

exp

�

� x(s+ 1�

1

4k

)

�

'

0

(s)d�dt.
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Therefore

�(x) = exp

�

� x(1�

1

4k

)

�

Z

jsj�R

exp(�xs)'

0

(s)d�dt

= �R

2

exp

�

� x(1�

1

4k

)

�

1

X

m=0

(�1)

m

�

m

(xR

2

)

m

(m+ 1)!

We have

k'

0

k

2

=

Z

jsj�R

j'

0

j

2

d�dt = �R

2

1

X

m=0

j�

m

j

2

R

2m

m+ 1

:

Using the ontinuous linear form L((f

j

)

n

j=1

) :=

n

P

j=1

�

j

(C

l

)f

j

we get

k'

0

k

2

= kL(')k

2

� kLk

2

k'k

2

= kLk

2

:

This gives:

�R

2

1

X

m=0

j�

m

j

2

R

2m

m+ 1

= k'

0

k

2

� kLk

2

:

Setting �

m

:= (�1)

m

R

m

�

m

=(m + 1) we get

1

P

m=0

j�

m

j

2

� kLk

2

=(�R

2

),

whih gives us an upper bound for j�

m

j.

Set

F (u) :=

1

X

m=0

�

m

m!

u

m

:

F (u) is an entire funtion. For any Æ > 0 there is a sequene u

n

�! 1

suh that

jF (u

n

)j > exp

�

� (1 + 2Æ)u

n

�

:

Suppose the ontrary. Then for all u 2 R, some A > 0 and some small

Æ > 0

je

(1+Æ)u

F (u)j < Ae

�Æjuj

:
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Beause

je

(1+Æ)z

F (z)j � e

3jzj

we have for all z 2 C

and as e

(1+Æ)z

F (z) is entire, by Theorem 2.4 we obtain a funtion f with

support in (�3; 3) suh that

e

(1+Æ)z

F (z) =

1

p

2�

1

Z

�1

f(u)e

iuz

du:

Beause je

(1+Æ)u

F (u)j � Ae

�Æjuj

for u 2 R, we get

f(z) =

1

p

2�

1

Z

�1

e

(1+Æ)u

F (u)e

�izu

du;

where the equality holds almost everywhere for z 2 R. This integral on-

verges absolutely for jIm(z)j � Æ=2. So it de�nes an analyti funtion near

the real axis. Therefore the support of f in R an not be in the interval

(�3; 3). This ontradits the assumption.

We have �(x) = �R

2

exp

�

� x(1 �

1

4k

)

�

F (xR). Set x

n

:= u

n

=R. Then

j�(x

n

)j > exp

�

� (1� Æ

0

)x

n

�

for Æ

0

> 0 suÆiently small.

As a onsequene we �nd subintervals I

n

of [x

n

�1; x

n

+1℄ of length greater

than

1

2x

8

n

in whih one of the the inequalities

jRe�(x)j >

e

�(1�Æ

0

)x

200

or

jIm�(x)j >

e

�(1�Æ

0

)x

200

holds.

To prove this we approximate � by polynomials. Set N := [x

n

℄ + 1. Let

B be an upper bound of the j�

m

j. This gives jF (xR)j � Be

xR

. For

x 2 [x

n

� 1; x

n

+ 1℄ we have (remember R < r < 1=4k)

j

1

X

m=N

2

�

m

m!

(xR)

m

j � B

1

X

m=N

2

1

m!

(xR)

m

� B

(xR)

N

2

N

2

!

1

X

m=0

1

m!

(xR)

m

� B

N

N

2

N

2

!

e

N

� B

�

N

N

2

=e

�

N

2

e

N

� B

e

N

2

+N

N

N

2

� e

�2x

n
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if x

n

is suÆiently large.

Similarly for x 2 [x

n

� 1; x

n

+ 1℄ we have

1

X

N

2

=m

�

� (1�

1

4k

)x

�

m

m!

� e

�2x

n

and exp

�

� (1�

1

4k

)x

�

� e

(1�

1

4k

)x

:

Hene F (xR) = P

1

(x)+O(e

�2x

n

) and exp (�(1�

1

4k

)x) = P

2

(x)+O(e

�2x

n

),

where P

1

and P

2

are polynomials of degree N

2

. This gives

�(x) = P

n

(x) + O(e

�x

n

) all N = [x

n

℄ + 1 and x 2 [x

n

� 1; x

n

+ 1℄, where

P

n

(x) is a polynomial of degree less than N

4

.

Sine j�(x

n

)j > exp

�

�(1�Æ

0

)x

n

�

we have

1

2

e

�(1�Æ

0

)x

n

� jP

n

(x

n

)j for large

n. Set a := max

jx�x

n

j�1

jP

n

(x)j. Then there exists a � 2 [x

n

� 1; x

n

+ 1℄

suh that a = jP

n

(�)j. There exists a � 2 (�; x) or � 2 (x; �) suh that

jP

n

(�)�P

n

(x)j = jP

0

n

(�)(x��)j. Set � := j��xj=N

8

. Then by theorem 2.5

we have jP

n

(�)� P

n

(x)j � �a. If � � 1=2 then j1�

P

n

(x)

P

n

(�)

j � 1=2, therefore

jP

n

(x)j �

a

2

�

jP

n

(x

n

)j

2

�

1

4

e

�(1�Æ

0

)x

n

for all x with jx � �j �

1

2N

8

. It

follows that j�(x)j �

1

8

e

�(1�Æ

0

)x

n

�

1

8e

2

e

�(1�Æ

0

)x

�

1

100

e

�(1�Æ

0

)x

for large

n.

For p

r

2 P

l

, and p

1

< p

2

< : : : < p

r

< : : : we have �

p

r

= r=4 whih gives

e

�2�i�

p

r

= i

r

. Therefore

h�

p

r

; 'i = Re(i

r

�(log(p

r

))):

One of the inequalities above is satis�ed in�nitely often. Consider the

interval I

n

:= [�+ �; �℄ suh that on I

n

one of the inequalities

jIm(�(x))j �

1

200

e

�(1�Æ

0

)x

or jRe(�(x))j �

1

200

e

�(1�Æ

0

)x

holds and

� �

1

2x

8

n

.

By theorem 2.3 the number of primes p 2 P

l

for whih log p 2 I

n

is:

�(e

�+�

; C

j

)� �(e

�

; C

j

) =

h

j

k

e

�+�

Z

e

�

dt

log t

+O(e

�+�

e

�a�

1=2

)

�

h

j

k

e

�

�

e

�

� 1

�+ �

+O(

e

�

e

a�

1=2

)

�

Sine � >

1

2x

8

n

, for x

n

suÆiently large we get

�(e

�+�

; C

j

)� �(e

�

; C

j

) �

h

j

k

e

x

n

x

10

n
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The number of primes p in the interval I

n

with exp(�2�i�

p

) = 1;

exp(�2�i�

p

) = �1; exp(�2�i�

p

) = i; or exp(�2�i�

p

) = �i is therefore

more than

h

j

k

e

x

n

4x

10

n

.

Therefore

X

p2P

l

\I

n

Re(e

�2�i�

p

�(log p))>0

h�

p

; 'i > 

1

e

Æ

0

x

n

=2

for some positive onstant 

1

. The same holds for a subset of primes with

Re(e

�2�i�

p

�(log p)) < 0, the sum is less than 

1

e

Æ

0

x

n

=2

. As x

n

�! 1 the

orresponding series diverge to +1 and �1.

Theorem 2.1. Assume that a Dirihlet series

1

P

n=0

a

n

n

�s

satis�es

a

n

= O

�

(n

�

) for every � > 0. Suppose that this series onverges for

Re(s) > 1 absolutely and an be analytially ontinued to the omplex plane

and has no pole for Re(s) � 1=2 exept a simple pole at s = 1. Denote

this funtion by f(s). Suppose further that jf(s)j

2

= O(jtj

M

) for some

M :=M(a; b) 2 R and s = �+ it where jtj � 1 and � 2 [a; b℄ with a; b 2 R.

Then

1

T

T

R

�T

jf(s+ it)j

2

dt is bounded for every s with Re(s) > 1� 1=M and

it is uniformly bounded for all s with Re(s) � � where 1 > � > 1� 1=M is

some �xed number. We an hoose M = inffmjf(s) = O(jtj

m

)g.

Proof. Obviously there is a � > 0 suh that

1

T

T

Z

�T

jf(s)j

2

dt = O(T

�

)

(take for example � :=M + 1).

We denote the in�mum of those � by �.

Using a Lemma in [8, p.151℄, we get for Re(s) > 1, (Æ > 0;  > 1;  > �)
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1

X

n=0

a

n

n

s

e

�Æn

=

1

2�i

+i1

Z

�i1

�(w � s)f(w)Æ

s�w

dw:

Beause of the ondition a

n

= O

�

(n

�

) the series on the left side of the

equation is absolutely onvergent for all Re(s) > 0 and therefore it is a

holomorphi funtion in this plane. By Stirling's formula on the �-funtion

we get j�(s)j � C

[a;b℄

jtj

��1=2

exp(�

�

2

jtj), where s = � + it and � 2 [a; b℄.

Therefore it follows from Cauhy's theorem, that the funtion

1

2�i

+i1

R

�i1

�(w � s)f(w)Æ

s�w

dw is an analyti funtion for all  > 0 and

Re(s) > 0, if � > � > � � 1. We have

1

2�i

+i1

Z

�i1

�(w � s)f(w)Æ

s�w

dw =

1

2�i

�+i1

Z

��i1

�(w � s)f(w)Æ

s�w

dw + f(s) + Res

w=1

�(w � s)f(w)Æ

s�w

Set B := Res

s=1

f(s). Then we �nd for f the expression

f(s) =

1

X

n=1

a

n

n

s

e

�Æn

�

1

2�i

�+i1

Z

��i1

�(w � s)f(w)Æ

s�w

dw �B�(1� s)Æ

s�1

;

where Re(s) � 1=2; � > � > � � 1.

Denote the �rst term on the right of the last equation by Z

1

and the seond

term by Z

2

.

We have B�(1� s)Æ

s�1

= O(jtj

1���1=2

e

�

�

2

jtj

Æ

��1

). This implies

B�(1� s)Æ

s�1

= O(jtj

�=2

e

�

�

2

jtj

) if Æ � jtj

��=2

; jtj � 1 and 1=2 � � � 1.

If � � a > 1=2 then
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T

Z

T=2

jZ

1

j

2

dt = O(T

1

X

m=1

ja

m

j

2

m

�2a

e

�2Æm

) +O

�

X

m 6=n

a

m

a

n

e

�(m+n)Æ

m

�

n

�

j log(m=n)j

�

= O

a

(T ) +O(Æ

2��2��

)

for some small � > 0 sine a

n

= O(n

�

).

Set w := �+ iv. We obtain

jZ

2

j �

Æ

���

2�

1

Z

�1

j�(w � s)f(s)jdv

�

Æ

���

2�

�

1

Z

�1

j�(w � s)jdv

1

Z

�1

j�(w � s)f

2

(w)jdv

�

1=2

:

As the �rst integral is just an integral over the �-funtion, it is bounded.

Assume T � jtj (reall that s = � + it). Set I

T

:= (�1;�2T ℄ [ [2T;1):

Z

I

T

j�(w � s)f

2

(w)jdv = O

�

Z

I

T

e

�

2

jv�tj

jvj

�2M

dv

�

= O

�

e

�

�

3

T

�

Hene

T

Z

T=2

jZ

2

j

2

dt = O

�

Æ

2��2�

T

2

O(e

�

�

3

T

) + Æ

2��2�

2T

Z

�2T

jf(w)j

2

(

T

Z

T=2

j�(w � s)jdt)dv

�

= O(Æ

2��2�

) +O

�

Æ

2��2�

2T

Z

�2T

jf(w)j

2

dv

�

= O

�

Æ

2��2�

T

1+2M

�

This gives (the bound above is uniform for � � a):
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T

Z

T=2

jf(s)j

2

dt = O(T ) +O(Æ

2��2���

) +O(Æ

2��2�

T

1+�+�

):

Set Æ := T

�

1

2

(

1+�

1��

)

, then for � > 1�

1��

1+�

we get

T

Z

T=2

jf(s)j

2

dt = O

a

(T ):

Adding up

T

R

T=2

jf(s)j

2

dt+

T=2

R

T=4

jf(s)j

2

dt+

T=4

R

T=8

jf(s)j

2

dt+ : : : gives

T

R

1

jf(s)j

2

dt = O

a

(T ) and analogously

1

R

�T

jf(s)j

2

dt = O

a

(T ).

For � �! 0 andM �! 1+� we get Re(s) > 1�

1

M

as a suÆient ondition

for

1

T

T

R

�T

jf(s+ it)j

2

being bounded.

Remark 2.1. For Heke-L-series over a �eld k with Q � k � K, where

K is a �nite normal extension of Q the onditions of the Theorem 2.1 are

satis�ed with M = [K : Q℄.

Proof. Denote the Dirihlet-oeÆients of the Heke-L-series L(s; �) by

a

n

(�) and the Dirihlet oeÆients of �

k

by a

n

. Then we have ja

n

(�)j � a

n

,

where a

n

is the number of ideals of norm n in the ring of integers of k.

Therefore we have ja

n

j = O

�

(n

�

).

Every Heke-L-series satis�es a funtional equation.

�(s; �) := C

s

�(

s+1

2

)

a

�(

s

2

)

r

1

�a

�(s)

r

2

L(s; �);

where r

1

is the number of real embedings of k, r

2

the number of omplex

embedings of k, a is the number of in�nite plaes of the ondutor of �

and C 2 R

>0

is a onstant. Then r

1

+ 2r

2

= [k : Q℄ � [K : Q℄. We have

�(s; �) = W�(1� s; �), where W is a root of unity. L(s; �) is a holomor-

phi funtion for all s 2 C , if L(s; �) 6= �

k

. If L(s; �) = �

k

there is a simple
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pole at s = 1.

By a theorem of Lavrik [6, (p.133: Lemma 2.1)℄ we have:

�(s; �) =



s(1�s)

+

1

P

n=1

(a

n

f(

C

n

; s)+W �a

n

f(

C

n

; 1� s)), where  is a onstant

for �

k

and zero in all other ases.

f(x; s) =

1

2�i

Æ+1i

R

Æ�1i

x

z

�(

z+1

2

)

a

�(

z

2

)

r

1

�a

�(z)

r

2

dz

z�s

, where Æ 2 R and

Æ > maxfRe(s); 0g. If we take Æ > maxfRe(s) + 1; 0g, then

jf(x; s)j �

x

Æ

2�

 

1

R

�1

r

1

Q

k=1

j�(

Æ+it+s

k

2

)j

!

j�(Æ + it)j

r

2

dt = C

Æ

x

Æ

But this means for Re(s) 2 [�1; 2℄ that j�(s; �)j � C

Æ

2

P

n2N

ja

n

(�)j

1

n

Æ

,

where Æ > 3. Therefore j�(s; �)j � 2C

Æ

�

k

(4). The same holds for �

k

if

we suppose that jIm(s)j is big enough, suh that we an ignore



s(1�s)

.

By the well known properties of the �-funtion we get therefore L(s; �) =

O(exp(Ajtj) and �

k

(s) = O(exp(Ajtj) for every �xed strip Re(s) 2 [a; b℄,

Im(s) = t and some A 2 R

>0

. To apply the Phragmen-Lindeloef-priniple

[5℄, we must show that we have L(s; �) = O(jtj

M

)on the bordersRe(s) = ��

and Re(s) = 1 + � for large t = Im(s) and every �xed small � > 0.

This would imply that L(s; �) = O(jtj

M

) for all Re(s) 2 [��; 1 + �℄ and

jIm(s)j = jtj > 1.

Then the series L(s; �) and �

k

(s) onverges absolutely for all s with Re(s) =

1 + � and we have jL(s; �)j � �

k

(1 + �) and

j�

k

(s)j � �

k

(1+ �). This is an absolute onstant independent of Im(s) = t.

By the funtional equation we �nd that jL(s; �)j = O

�

�

g(jtj)

�

and j�

k

(s)j =

O

�

�

g(jtj)

�

for s with Re(s) = ��, where

g(jtj) = j�(

s+1

2

)

a

�(

s

2

)

r

1

�a

�(s)

r

2

=�(

1�s+1

2

)

a

�(

1�s

2

)

r

1

�a

�(1� s)

r

2

j:

Stirling's formula gives j�(s)j = O

�

jtj

��1=2

exp(�

�

2

jtj)

�

, where the onstant

in the big O depends only on the interval � 2 [a; b℄ with s = � + it.

Therefore it follows: g(jtj) = O

�

jtj

r

1

2

�

2

jtj

r

2

2�

�

= O

�

jtj

�[k:Q℄

�

. We had

Re(s) = 1+�. This means that in the strip � 2 [��; 1+�℄ we have L(s; �) =

O(jtj

M

�

) and �

k

(s) = O(jtj

M

�

) with M

�

= (1+ �)[k : Q℄. Then the in�mum

is obviously [k : Q℄.
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3. PROOF THE MAIN THEOREM

Proof (of theorem 1.1). The theorem of Brauer [7, p.544℄ states that every

harater is a �nite linear ombination � =

P

l

n

l

'

�

l

�

P

l

m

l

 

�

l

, where '

�

l

,

and  

�

l

are indued from haraters '

l

;  

l

of degree 1 of subgroups of G.

With this theorem Brauer proved, that L(z; �) =

m

1

Q

l=1

L(z; '

l

)

.

n

1

Q

l=1

L(z;  

l

),

where the series L(z; '

l

) and L(z;  

l

) are Heke-L-series over number �elds

ontained in K. These are entire funtions with the only exeption of the

Dedekind-�-funtions whih have a simple pole at z = 1. Therefore the

onditions of Lemma 2.1 are satis�ed. Choose the sets M

�

� P aording

to Lemma 2.2.

Then we have to show that the onditions in Corollary 2 are ful�lled.

If the haraters �

1

; : : : ; �

n

are not yet a basis of the lass funtions of

G, then add some more haraters (for example from the set of irreduible

haraters of G). Choose additional holomorphi funtions f

j

, for example

onstants 6= 0, that satisfy the onditions of Lemma 2.2.

As we now have a basis of lass funtions, every harater �

�

l

;  

�

l

an be

expressed as a linear ombination of this basis.

We have jL

M

�

(s+ 1�

1

4k

; �; �

j

)� f

j

(s)j < �.

Now hoose a sequene �

n

:= 1=n, y

n

:= maxM

n�1

(y

0

:= 1), �

n

2 R

P

and M

n

� P suh that Lemma 2.2 with � = 1=n, y := y

n

and M = M

n

is

satis�ed. M

n

�M

n+1

is a onsequene.

Then beause of lim

n�>1

L

M

n

(s + 1 �

1

4k

; �

n

; �

j

) = f

j

(s) and f

j

(s) 6= 0, we

get:

lim

n�>1

�

X

p2M

n

�

j

(�

p

)e

�2�i�

p

p

s+1�

1

4k

+

X

p2M

n

;��2

a

p

(�

j

; �; �)p

��(s+1�

1

4k

)

�

= log f

j

(s);

where the seond sum represents an absolutely onvergent series for p 2 P.

For every harater � := �

j

we have
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L

M

n

(s+ 1�

1

4k

; �; �) =

Q

m

1

l=1

L

M

n

(s+ 1�

1

4k

; �; '

�

l

)

Q

n

1

l=1

L

M

n

(s+ 1�

1

4k

; �;  

�

l

)

;

and

log

�

L

M

n

(s+ 1�

1

4k

; �; '

�

l

)

�

=

X

p2M

n

'

�

l

(�

p

)e

�2�i�

p

p

s+1�

1

4k

+

X

p2M

n

;��2

a

p

('

�

j

; �; �)p

��(s+1�

1

4k

)

:

As the series

P

p2P;��2

a

p

('

�

j

; �; �)p

��(s+1�

1

4k

)

is absolutely onvergent, we

only need to show the onvergene of

lim

n!1

X

p2M

n

'

�

l

(�

p

)e

�2�i�

p

p

s+1�

1

4k

:

But sine '

�

l

is a lass funtion on G and �

1

; : : : ; �

k

is a basis of the lass

funtions: '

�

l

=

P

k

j=1

r

j;l

�

j

,

lim

n!1

X

p2M

n

'

�

l

(�

p

)e

�2�i�

p

p

s+1�

1

4k

=

k

X

j=1

r

j;l

�

lim

n!1

X

p2M

n

�

j

(�

p

)e

�2�i�

p

p

s+1�

1

4k

�

:

Sine we have now proved that the logarithms of the sequenes of fun-

tions L

M

n

(s+1�

1

4k

; �; '

�

l

); L

M

n

(s+1�

1

4k

; �;  

�

l

) onverge, it is lear that

the sequenes themselves onverge to some holomorphi funtions f

'

�

l

; f

 

�

l

with f

'

�

l

6= 0 and f

 

�

l

(s) 6= 0 on jsj � r.

Therefore the onditions in Corollary 2 are ful�lled and the theorem is

proved.
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4. CONSEQUENCES

Theorem 4.6. Let K

1

; : : : ;K

r

be �nite normal extensions of Q with

K

i

\K

j

= Q for i 6= j .

If for a ontinuous funtion f(x

1

; : : : ; x

r

) the following equation

8

s2Cnf0g

f(�

K

1

(s); : : : ; �

K

r

(s)) = 0

holds, then

f � 0:

Proof. We have [7, p.547℄

�

K

(s) = �(s)

Y

�6=1

L(s; �)

�(1)

;

where the produt is taken over all non-trivial irreduible haraters of the

Galois group of the normal extension K=Q.

These haraters � and the harater 1 = id

G(K=Q)

are a basis of the lass

funtions on the group G := Gal(K=Q).

Let K be the smallest �eld that ontains all K

1

; : : : ;K

r

. K is a �nite nor-

mal extension of Q. The orresponding irreduible haraters ofGal(K

j

=Q)

may be regarded as haraters of Gal(K=Q) sine

Gal(K=Q) =

Q

r

j

Gal(K

j

=Q) is a diret produt. Let a 2 C

r

be any point

for whih f(a

1

; : : : ; a

r

) 6= 0, then there is an open subset U � C

r

ontain-

ing a, on whih f(x

1

; : : : ; x

r

) 6= 0. Therefore we may suppose that a

j

6= 0.

By Theorem 1.1 we �nd for every � > 0 a value s 2 C , suh that

r

max

j=1

j�

K

j

(s) � a

j

j < �, that is (�

K

1

(s); : : : ; �

K

r

(s)) 2 U for small �. This

ompletes the proof.

In general we annot prove that for di�erent Galois extensions K

j

of Q the

orresponding Dedekind-�-funtions are algebraially independent. For ex-

ample the �eld K := Q(�), where � is a primitive 8�th root of unity. This

extension has 3 di�erent subextensions K

j

of degree 2 over Q. Then we

�nd �

K

�

2

Q

= �

K

1

�

K

2

�

K

3

as an algebrai relation.
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More generally as �

K

(s) = �(s)

Q

�6=1

L(s; �)

�(1)

for every normal �eld it

is lear that if G

K

:= Gal(K=Q) has more normal subgroups than on-

jugay lasses, then there is a non-trivial algebrai relation between the

orresponding �-funtions.

Further algebrai relations are disussed in the artile of Rihard Brauer

[3℄.

Theorem 4.7. Suppose that we have �nite normal extensions K

j

=Q,

j = 1; : : : ; n and the orresponding funtions �

K

j

do not satisfy any non-

trivial algebrai relation.

Then for every ontinuous funtion f(x

1

; : : : ; x

n

) on C

n

the relation

f(�

K

1

; : : : ; �

K

n

) � 0 implies f � 0.

Proof. To prove this, let K be the minimal sub�eld of C ontaining all

K

1

; : : : ;K

n

. We may regard all the haraters as haraters of

G := Gal(K=Q) as Gal(K

j

=Q)

�

=

G=N

j

for a unique normal subgroup

N

j

CG.

Then for the �-funtions we have �

K

j

= �(s)

Q

�6=1

L(s; �)

�(1)

, where the

produt is taken over all haraters � with �(x) = �(1) for all x 2 N

j

.

By theorem 1.1 we an approximate all values y

1

6= 0; y

�

6= 0 simultane-

ously by �(s) and the L(s; �) by taking a suitable s 2 C n f1g.

To prove the theorem it has to be shown that the same holds for the

X

K

j

:= y

1

Q

�6=1

y

�

(the produt is taken only over all haraters � with

�(x) = �(1) for all x 2 N

j

): i.e., every set of non-zero values

X

K

j

; j = 1; : : : ; n an be simultaneously approximated.

Taking the logarithms logX

K

j

= log y

1

+

P

�6=1

log y

�

( eah sum is taken

over all � with �(x) = �(1) for all x 2 N

j

) the statement is lear if the

right sides of these equations are linearly independent.

But if these equations were not linearly independent, then there would be a

relation 0 =

n

P

j=1

m

j

�

log y

1

+

P

�;K

j

log y

�

�

with integers m

j

6= 0 for all j.

This would result in an algebrai relation

Q

n

j=1

�

m

j

K

j

(s) = 1 between the

�

K

j

.

Theorem 4.8. Let K=Q be a normal extension, �

K

the orresponding

Dedekind-�-funtion. If f(x

1

; : : : ; x

m

) is any ontinuous funtion, then

the di�erential equation f(�

K

; �

0

K

; : : : ; �

(m)

K

) � 0 implies f � 0.
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Proof. By �

K

= �(s)

Q

�6=1

L(s; �)

�(1)

we may redue the proof to the

proof of the following statement:

For every ontinuous funtion g the equation

g(�(s); : : : ; �

(k)

(s); L(s; �); : : : ; L

(k

�

)

(s; �); : : :) � 0 implies that g � 0.

Suppose that g(a

0

; : : : ; a

k

; a

0

�; : : : ; a

k

�

(�); : : :) 6= 0. Beause g is ontin-

uous we may assume that a

0

6= 0; a

0

� 6= 0; : : : and that on an open set

ontaining (a

0

; : : : ; a

k

; a

0

�; : : : ; a

k

�

(�); : : :) the funtion g is non-zero.

By the ontinuous dependene of the derivatives of an analyti funtion on

ompat domains, whih is implied by Cauhy's formula, we only need to

approximate the polynomial a

0

+

a

1

1!

s+ : : :

a

k

k!

s

k

by �(s+1�

1

4k

+it) and the

polynomials a

0

(�)+

a

1

(�)

1!

s+: : :

a

k

(�)

k!

s

k

�

by the funtions L(s+1�

1

4k

+it; �)

with suitably hosen t 2 R aording to theorem 1.1. If a

0

and the a

0

(�)

are nonzero we an always suppose (by hoosing r <

1

4k

suÆiently small)

that these polynomials are non-zero in the dis jsj � r.

As the funtion g is nonzero in an open set ontaining the point

(a

0

; : : : ; a

0

(�); : : :) this ontradits

g(�(s); : : : ; �

(k)

(s); L(s; �); : : : ; L

(k

�

)

(s; �); : : :) � 0.

REFERENCES

1. Ahieser, N.I. Vorlesungen �uber Approximationstheorie. (German) Mathematishe

Lehrb�uher und Monographien. I. Abt. Band II. Berlin: Akademie-Verlag. (1967).

2. Artin, Emil. Colleted papers. Ed. by Serge Lang, John T. Tate. (Unaltered repr. of

the 1965 orig., publ. by Addison-Wesley Publishing Company, In.).

3. Brauer, Rihard. Beziehungen zwishen Klassenzahlen von Teilk�orpern eines galoiss-

hen K�orpers. Math. Nahr. 4, 158-174 (1951).

4. Karatsuba, Anatolii A. ; Voronin, Sergei M.. The Riemann Zeta-Funtion. Walter de

Gruyter. 1992.

5. Lang, Serge. Algebrai Number Theory. Springer Verlag. 1991.

6. Lavrik, A.F. : Izv. Akad. Nauk SSSR, Ser. Mat. Tom. 32 (1968) No. 1. (english).

7. Neukirh, J�urgen. Algebraishe Zahlentheorie. Springer Verlag. 1992.

8. Tithmarsh, E.C. The theory of the Riemann zeta-funtion. 2nd ed., rev. by D. R.

Heath- Brown. Oxford (1986). Oxford Siene Publiations. Oxford: Clarendon Press

London: Oxford University Press. (1975)


