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We generalize a theorem of Voronin [4] on the joint distribution of non-zero
values of Dirichlet L-Functions to Artin-L-Functions. As a consequence we get
the differential independence of (-functions of normal extensions of Q.

1. MAIN THEOREM

We prove the following statement on Artin-L-series over Q:

THEOREM 1.1. Let K be a finite Galois-extension of Q and x1, ..., Xn lin-
early independent characters of the group G := Gal(K/Q). Let k := #G
and f1(s),..., fn(s) be holomorphic functions on |s| < r and continuous on

El |§|r, where r is a fived number 0 < r < 4. Further suppose f;(s) # 0
on |s| <.

Then for every € > 0 there is a set A, C R such that

A T
lim inf vol(4. 1 (0, 1))

T— 00 T >0

and forj=1,...,n
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1 .
VteAeV\slgr d|L(s+1—-—+ Zt,Xj) — f](8)| < €,

4k
where L(z,x;) denotes the corresponding Artin-L-series.

As a consequence we find conditions for the functional independence of
Dedekind-(-functions (Theorems 4.6 and 4.7) and the differential indepen-
dence of Dedekind-(-functions (Theorem 4.8).

2. PREPARATION
Denote by P the set of rational primes.

DEFINITION 2.1. Suppose that

F(s) =[] fp™)

peP

where fj,(2) is a rational function and the product converges absolutely for
Re(s) > 1.

Then for any finite set M C P of primes and for any § € R” we define

Fu(s,0) := [] folp e 2"%).

peEM

LEMMA 2.1. Suppose that Fi(s),...,F,(s) are analytic functions which
are represented by products

Fi(s) =] £os0™)

peP

o0
for Re(s) > l,where f, j(z) =1+ > agj;-)zm are rational functions of z
m=1

without poles in the disc |z| < 1. For all € > 0 there are constants c(e) >0
with
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Further suppose that they have an analytic continuation to the plane
Re(s) > 1 —1/2k with at most one simple pole at s = 1.

Assume that

T
1 A
T/|Fj(a+it)|zdt
-T

is uniformly bounded for o € (o, 1) and T € R", if a € (1 — 5z, 1) is fized.

Let My C My C ... be finite sets of primes with P = U;’il M;.
Suppose lim Fjar,(s,0;) = fi(s) uniformly in|s — (1 — )] <r < 4.
J—>00

Then for any € > 0 there exists a set Ac C R such that for all j and
allt € A,

max |Fj(s +it) — fi(s)] <e

ls—(1—gF)|<r
and
A T
liminf M > 0.
T—00 T
b=Nnm b=N?, s
COROLLARY 2.1. Let Gp(s) := [[,—) ™ Finp(8)/ [1=y ™ Fpyy p(8). Suppose

that the functions Fi, p(s), Fyy, ,(s) satisfy the conditions of Lemma 1.
Assume that .lir>n Gm,m;(5,05) = fu(s) and 'lir>n Frpon; (5,05,) = frmp(s).
j—>00 j—>00

Under the further condition that max | frm.b(s)] >0 and
m,b,s
() = TI2™ Fn(8)/ TL2 ™ Fo(s) for |s| < 7 we have:
For any € > 0 there is a set B, C R such that for all m and all t € B,

max B |G (s +it) — fin(s)] <€
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and

i inf vol(B. N (0,T))

T—0 T > 0.

Proof. The proof of the lemma is completely analogous to Voronin’s proof

in [4, p.256]. |

LEMMA 2.2. Let0<r < ﬁ and X1,---,Xn be linearly independent non-
abelian characters of G := Gal(K/Q) where K is a finite normal algebraic
extention of Q. Let k := #G.

Suppose that fi(s),..., fu(s) are analytic for |s| < r and continuous for
|s| < r and not zero on the disc |s| < r. Then for every pair ¢ > 0 and
y € RT there exists a finite set of primes M containing all primes smaller

than y and @ € R® such that:

n 1
r?:afcgléxrlLM(SnL 1= 10oX3,0) = fils)l <e

For the proof we need the following theorem on conditionally convergent
series

(ee]
THEOREM 2.2. [4, p.352] Suppose that a series of vectors Y u, in a real

n=1

o0
Hilbert space H satisfies Y ||unl|?> < oo and for every e € H with e # 0
n=1

o0
the series Y (u,,e) converges conditionally.
n=1

(oo}
Then for any v € H there is a permutation 7 of N so that ) Ur(n) = v in

n=1
the norm of H.

and a theorem of Artin:

THEOREM 2.3 (Artin). /2, p.122] If m(C};, x) is the number of primes in

T

the class C; smaller than x then: w(xz,C;) = IZ—’ lc‘_igtt + O(we_“logl/%)
2

where a is some positive constant, k = #G and h; = #Cj.
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THEOREM 2.4 (Paley-Wiener). [1, p.166] Let F' be an entire function.
Then the following statments are equivalent:

(1) / |F(z)|*dz < oo and limsup |F(z)e” (“+91#l| < oo for every e > 0
0 zeC

1 i '
= — w)e'™du
5 ] f(u)

(2) there is a function f € L?(0,—0) such that F(z)

THEOREM 2.5 (Markov). [1, p.314] Let P be a polynomial of degree < n.
Then maxi, <1 |P' ()] < n® max), <q |P(z)].

Proof (of Lemma 2.2).

Choose v > 1 such that v*r < J; and

V; :max |f;(s) — fj(s/’y2)| <e€

ls|<r

Because f;(s) # 0 we can write

fi(s) = exp(g;(s)) for some g;(s) analytic in |s| < 7.

Hence it is sufficient to prove the Lemma for the logarithms of the func-

tions.

For Artin-L-series L(s, x;) the Euler-factors are defined by

1/ det(Ey; —p;(op)p~*), where oy, is one of the conjugate Frobenius-automorphisms
over p € P and p; : G — GLy,; (C) is a representation of G with

vi(o) = trace(p; (7).

For the Euler-factors of Ly (s', x;,6) we get:

trace(p; exp(—2mif /
—IOgLP(Slaxjao) = - (pJ (o.p);slxp( T p) + Z am,l’p—ms
m>2
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The first term is w. Therefore

—2mifp)

—log Ln(s', x;j,0 Z XJ Up + Z Z A, pP —ms’

pPEM pPEM m>2

The second term is a uniformly and absolutely convergent series for all
primes in Q.

We define a real Hilbert space ”H%R) of holomorphic functions on the disc
|s| < R with the scalar product

((hj)j=1, (fj)j=1) == R / ng h;(s)dodt.

s|<Rr I=1

Set R :=r (v < 1) and np(s) := (M)

where

p® =D
s' =s+1— 4 with |s| < R.
Denote the different conjugacy classes of the group G by C,...,Cy. Obvi-
ously n < N since N is the dimension of the vectorspace of class functions
on G.

Denote the different prime classes by P; := {p | 0, € C;}.

To define 6: In the natural order of the sets P°; such that

pja < pj2 <Dj3-...set B, =L Thereby 6, is defined for all primes.
We will use the above Theorem 2.2 on conditionally convergent series in
Hilbert spaces.

We only need to show that the series n,,p € P fulfills the conditions of this
theorem:

Y |Impll? < kn Y p#E2T2E < 0o, (obviously g — 2+ 2R < —(1+ ¢) for
peP peP

some small €;)

For e we can choose any ¢(s) € HE with ||p(s)|| := (p(s), p(s))'/? = 1.
Now we have to show that

> iy p(s))

peP
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is conditionally convergent or equivalently,
that there exist two sets of primes P, and P_ such that
VpeIP’+ : (ﬂp%ﬂ(s)) >0, Z <77P790(8)> = 00, and

peP

> <77P790(5)> = —00, Vpep_ : (7717790(5» <0.
peP_

We compute:

n
(o) = Re / S i (5) 5 (5) dodt
lsl<r I=1
n
~ Re / S x5(op)e 2 o () dordt
|s|<r =1
n
_ Re(e’z’”e / p (s+1fﬁ) Z (op)p;(s) ))dodt)

It follows that

Jim ()| = 0.

Since the characters X; are linearly independent, there is a class C; in G

such that ¢ := Z x;j(op)pi(s) 0 for all o), € C.
]_
As the functlons ; are holomorphic in the disc |s| < R, we have

po(s) = Zams

For p € Cl we have

. 1
(np,p) = Re(e " / exp (—log(p)(s+1— E))%(s)dodt
[s|I<R
Re (6_2”91’A(10gp))

Here A(z) := ‘ |£R exp (— (s + 1 — £))Po(s)dodt.
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Therefore

|s|<R
) 1.\ w— (=)™a@,(zR*)™
- e (ot ) 33 UG

We have

0 2 2m
2 2 2 lom |[*R
= dodt =R —_—
ol |/ ol > e
s|<R =

n

Using the continuous linear form L((f;)7_,) == >_ x;(Ci)f; we get
j=1

loll* = IL(I1” < NLIPllell* = [1LI1>.
This gives:

0 |am|2R2m )
R YD S = gl < 1L
m=0

Setting By, = (=1)™R™@,/(m + 1) we get Y. |Bm|> < ||LI?/(xR?),
m=0

which gives us an upper bound for |3,,].
Set

u
m!

F(u) := Zﬂ—m m.

F(u) is an entire function. For any ¢ > 0 there is a sequence u,, — 00
such that

|F(u,)| > exp ( -1+ 26)un).

Suppose the contrary. Then for all u € R, some A > 0 and some small
0>0

le+Dup(u)| < Ae 0N,
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Because
|e(1+6)zF(z)| < €°*l we have for all z € C

and as e(1+5)ZF(z) is entire, by Theorem 2.4 we obtain a function f with
support in (—3,3) such that

(1+J)zF 27T /f zuzdu'

Because |e!t)UuF(u)| < Ae=lul for u € R, we get

f Z (1+6 uF ) 7zzudu7

sk

where the equality holds almost everywhere for z € R. This integral con-
verges absolutely for |Im(z)| < /2. So it defines an analytic function near
the real axis. Therefore the support of f in R can not be in the interval
(—3,3). This contradicts the assumption.

We have A(z) = nR?exp ( — #(1 — %)) F(zR). Set z, := un/R. Then
|A(z,)] > exp (= (1 = do)an) for & > 0 sufficiently small.

As a consequence we find subintervals I, of [z, —1, z, +1] of length greater
than 515 in which one of the the inequalities

—(1—(50)Z
|R€A($)| > 62700 or

—(1—(50)Z

e
ImA _
ImAE) > o

holds.

To prove this we approximate A by polynomials. Set N := [z,] + 1. Let
B be an upper bound of the |3,,|. This gives |F(zR)| < Be®f. For
z € [z, — 1,2z, + 1] we have (remember R < r < 1/4k)

ﬂm (.’L'R)N2 ad 1
| 22 @B < B 22 (@R <SB30 @R
m=N m=N m=0
NN? N N ~ y eN?+N .
§BN2!6 SB(NZ/e) e gBNN2 <e 2@
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if x,, is sufficiently large.
Similarly for = € [z, — 1,2z, + 1] we have

st —(1=y)y2\™ 1 1
Z ( ( m'4k) ) < e~ 2% and exp( (1 _ E) ) < e(l—m)x'
N2=m

Hence F(zR) = Pi(z)+0(e™2"* ) and exp (— (1 — - )z) = Po(2)+0(e™ "),
where P, and P, are polynomials of degree N2. This gives

A(z) = Py(z) + O(e™*) all N = [z,] + 1 and = € [z, — 1,2, + 1], where
P, (z) is a polynomial of degree less than N4,

Since |A(z,,)| > exp (—(1—do)z,,) we have 2e~(1=9%0)2n < | P, (z,,)| for large
n. Set a := max|,_,,|<1 |Pn(z)|. Then there exists a £ € [z, — 1,7, + 1]
such that a = |Py(§)|- There exists a k € (§,z) or k € (x,&) such that
|Po (&) — Po(z)| = |PL(k) (x—&)|. Set 7:=|¢—x|/N®. Then by theorem 2.5
we have |P,(€) — P,(z)| < Ta. If 7 < 1/2 then
|Py(z)] > & > Bnlendl > Lo=(-d0)zn for all & with |z — £] < 5hs. It

(zz Z 1 > INT
follows that |A(z)| > te~(1=%)zn > #6_(1_(50” > ﬁe_(l_‘so)w for large
n.

)
o)l
1o
g€

For p, € P;, and p; <p2 < ... <pr < ... we have 6, =r/4 which gives
e~2mpr = 7 Therefore

(Mp,., ) = Re(i"A(log(pr))).

One of the inequalities above is satisfied infinitely often. Consider the
interval I, := [a + 3,a] such that on I, one of the inequalities
[Im(A(z))] > 556~ (17902 or |Re(A(z))] > 555e~ (2797 holds and

ﬂ Z 2;8 -

By theorem 2.3 the number of primes p € P, for which logp € I, is:

« [e3 a 7(1&1/2
m(e®*P,C) —m(e*,C;) = =L / @+O e )

h; e’ —1 e
> Le
Z ke <Oz+ﬂ +O(eaa1/2)>

for x,, sufficiently large we get

Smceﬂ>28,

Tn

9]

10
n

7r(e“+/3,0j) —m(e*, Cj) > h—k]

8
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The number of primes p in the interval I, with exp(—2mif,) =1,

exp(—2mif,) = —1,exp(—2mif,) = i, or exp(—2mwif,) = —i is therefore
more than h—k’ f;fo-
Therefore
S e >adns
pEP NIy

Ree—2m% aAglog p))>0

for some positive constant ¢;. The same holds for a subset of primes with
Re(e 2™ A(log p)) < 0, the sum is less than ¢;e%?»/2. As x,, — oo the

corresponding series diverge to 400 and —oo. |

THEOREM 2.1. Assume that a Dirichlet series > a,n™?° satisfies

n=0
an = O.(n) for every ¢ > 0. Suppose that this series converges for
Re(s) > 1 absolutely and can be analytically continued to the complex plane
and has no pole for Re(s) > 1/2 except a simple pole at s = 1. Denote
this function by f(s). Suppose further that |f(s)|> = O(|t|™) for some
M := M(a,b) € R and s = o +it where |t| > 1 and o € [a,b] with a,b € R.

T
Then 7 {r’ |f(s+it)|* dt is bounded for every s with Re(s) > 1—1/M and

it is uniformly bounded for all s with Re(s) > o where 1 > a >1—1/M is
some fized number. We can choose M = inf{m|f(s) = O(|t|™)}.

Proof. Obviously there is a £ > 0 such that

T

7 [ rora=oas

=T
(take for example £ := M + 1).

We denote the infimum of those & by pu.

Using a Lemma in [8, p.151], we get for Re(s) > 1, (§ > 0,¢ > 1,¢ > o)
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o 1 c+ico

An  _sp _ s—w
Z L / L(w — s) f(w)d® Ydw.
n=0 c—100

Because of the condition a,, = O.(n¢) the series on the left side of the
equation is absolutely convergent for all Re(s) > 0 and therefore it is a
holomorphic function in this plane. By Stirling’s formula on the I'-function
we get |[(s)| < Clqp[t|” 1/ exp(—Z|t]), where s = o + it and o € [a, b].
Therefore it follows from Cauchy’s theorem, that the function
ct+ioco
5= [ D(w - s)f(w)6* “dw is an analytic function for all ¢ > 0 and
Cc—100

Re(s) > 0,if 0 >a >0 — 1. We have

c+i00

% / D(w — ) f(w)é* Vdw =
1 a+1i00
= / T(w — 8)f (w)6*“dw + f(s) + Resp1T(w — 5)f (w)5*~?

Set B := Ress—1 f(s). Then we find for f the expression

00 a—+100

flo) =30 oo L / [(w — 5) f()5* ¥ dw — BU(1 — )5°",

n=1 a—1i00

where Re(s) > 1/2,0 >a >0 — 1.
Denote the first term on the right of the last equation by Z; and the second
term by Z.

We have BI'(1 — 5)8*~ 1 = O(|t|' 7 1/2e~3/tl§7=1). This implies
BT(1—s)8*t = O(|t|"2e 31ty if 6 > |t| ™/, || > 1 and 1/2 > 0 > 1.

If o > a>1/2 then
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T
0 = —(m+n)é
7.2 e=20m) Aman€
/ |2t Z +O(Z 17| log(m /)]
T/2 m=1 m#n
= 04(T) + 0(5* ™)

for some small € > 0 since a,, = O(n¢).

Set w := « + iv. We obtain

IN

| Zs| 6 / IT(w — s)f(s)|dv

oc—a 1/2
< ‘5 /|r —s|dv/|F w—8) f(w)lde)

As the first integral is just an integral over the I'-function, it is bounded.
Assume T > |t| (recall that s = o + it). Set I := (—o0, —2T| U [2T, 00):

/|I‘ w—s)f4(w)|dv = (/e%‘”_t‘|v|_2Mdv) =0(e”37T)

It

Hence

T T 2T T

/|Zz|2dt = O(0* 220 FT) 49220 / |f(w)|2(/ IT(w — 5)|d)dv)

T/2 —2T T/2
2T

— 0(620'7201)_*_0(620'7201 / |f(w)|2dv) 20(62072aT1+2M)

—2T

This gives (the bound above is uniform for o > a):
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T
/ I£(5)[2dt = O(T) + O(627-20=¢) 4 O(§27 20 +nte),

T/2

Set § := Tfé(ii%), then for o > 1 — ﬁ we get

T
/Wﬂ%zaﬁ)

T/2
T T/2 T/4
Adding up [ |f(s)Pdt + [ |f(s)|Pdt+ [ |f(s)]Pdt+ ... gives
T/2 T/4 T/8

f|f(s)|2dt = 04(T) and analogously fl |f(s)|Pdt = Ou(T).
1 -r

For o« — 0 and M — 1+ we get Re(s) > 1— 4 as a sufficient condition

T
for + [ |f(s+it)|* being bounded. |
7

REMARK 2.1. For Hecke-L-series over a field k with Q C k¥ C K, where
K is a finite normal extension of Q the conditions of the Theorem 2.1 are
satisfied with M = [K : Q.

Proof. Denote the Dirichlet-coefficients of the Hecke-L-series L(s, x) by
an(x) and the Dirichlet coefficients of (i, by a,. Then we have |a,,(x)| < ap,
where ay, is the number of ideals of norm n in the ring of integers of k.
Therefore we have |a,| = O.(n®).

Every Hecke-L-series satisfies a functional equation.

A(s,X) i= C*T(2£1)9T(2)" T (s)" L (s, x),

where 7 is the number of real embedings of k, ro the number of complex
embedings of k, a is the number of infinite places of the conductor of y
and C € R>? is a constant. Then r; +2ry = [k : Q] < [K : Q. We have
A(s,x) = WA(1 — s,x), where W is a root of unity. L(s,x) is a holomor-
phic function for all s € C, if L(s, x) # (x. If L(s, x) = (i there is a simple
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pole at s = 1.

By a theorem of Lavrik [6, (p.133: Lemma 2.1)] we have:
A(s,x) = sp=5 + Z (anf(£,5)+ Wa,f(£,1—s)), where c is a constant

for (j and zero in all other cases.
0+o0i N

f(z,s) = 2—7”.6 Ik .wzf(%)af(g)”’af( )2 where § € R and
— 00T

0 > max{Re(s),0}. If we take § > max{Re(s) + 1,0}, then
|f(z,s)] < w f H IT°( ‘5+”+s’~)|> ID(8 + it)|"2dt = Csa®

But this means for Re( ) € [-1,2] that [A(s,x)| < C52 Y |an(X)|75,

neN
where § > 3. Therefore |A(s, x)| < 2Cs5(x(4). The same holds for (. if
we suppose that |Im(s)| is big enough, such that we can ignore Fgpl
By the well known properties of the I'-function we get therefore L(s,x) =
O(exp(A|t]) and (i(s) = O(exp(AJt|) for every fixed strip Re(s) € [a,b],
Im(s) =t and some A € R”Y. To apply the Phragmen-Lindeloef-principle
[5], we must show that we have L(s, x) = O(|t|™ )on the borders Re(s) = —e¢
and Re(s) = 1 + e for large ¢ = Im(s) and every fixed small ¢ > 0.
This would imply that L(s,x) = O(|t|™) for all Re(s) € [~¢,1 + €] and
[Im(s)| = |t] > 1.

Then the series L(s, x) and (;(s) converges absolutely for all s with Re(s) =
1+ € and we have |L(s, x)| < (x(1+¢€) and

|Ck(s)] < Ck(1+€). This is an absolute constant independent of I'm(s) = t.
By the functional equation we find that |L(s, x)| = Oc(g(|t])) and |(e(s)| =
Oc(g(]t])) for s with Re(s) = —e, where

g([t]) = |D(=FH)T(5)"~°T(s)™ /T (F=5E) T (152) "~ T (1 — 5)".

Stirling’s formula gives [I'(s)| = O(|t|” /2 exp(—Z|t|)), where the constant
in the big O depends only on the interval o € [a,b] with s = o + it.

Therefore it follows: g([t|) = O(|¢|"2%[t|™227) = O(|¢|]=YU). We had
Re(s) = 1+e. This means that in the strip o € [—¢,1+¢€] we have L(s, x) =
O(|t|™<) and (i (s) = O(|t|™<) with M, = (1+€)[k : Q). Then the infimum

3
b

is obviously [k : Q]. 1
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3. PROOF THE MAIN THEOREM

Proof (of theorem 1.1). The theorem of Brauer [7, p.544] states that every
character is a finite linear combination x = > nip; — > myy), where ¢},
[ 1

and ¢ are induced from characters ¢y, 1, of degree 1 of subgroups of G.
With this theorem Brauer proved, that L(z, x) = Hl L(z, <pl)/ l_i L(z,v),
=1 =1

where the series L(z,¢;) and L(z, ;) are Hecke-L-series over number fields
contained in K. These are entire functions with the only exception of the
Dedekind-(-functions which have a simple pole at z = 1. Therefore the
conditions of Lemma 2.1 are satisfied. Choose the sets M, C [P according
to Lemma 2.2.

Then we have to show that the conditions in Corollary 2 are fulfilled.

If the characters xi1,...,xn are not yet a basis of the class functions of
G, then add some more characters (for example from the set of irreducible
characters of G). Choose additional holomorphic functions f;, for example
constants # 0, that satisfy the conditions of Lemma 2.2.

As we now have a basis of class functions, every character xj,v; can be
expressed as a linear combination of this basis.

We have |Ly, (s +1— 4,0,x;) — fi(s)| <.
Now choose a sequence €, := 1/n, y, := max M, _; (yo := 1), 0, € R®

and M,, C P such that Lemma 2.2 with e = 1/n, y :=y,, and M = M,, is
satisfied. M, C My is a consequence.

Then because of lim Ly, (s + 1 — 45,00, x;) = fi(s) and f;(s) # 0, we

n—>o00

get:

—2mifyp
. X _ _ L
nl_u>noo < E : Xj\9p)e s+1__ X9p)¢ E : ap(Xj; 0, Ii)p K(s+1 4k)> = log fj(s)7

pEM, pEMy ,k>2

where the second sum represents an absolutely convergent series for p € P.

For every character x := x; we have
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1 Ly, (s+1-— ,9,(,0;‘)
LMn(s+1__797X): =t ik %\ 7
4k [I2, Lo, (s + 1 — g5, 60,47)
and
log(LM (s-{-l—i 0 4,0,*)) =
n 4]{7, )
(‘0 —27if, (541 )
> AGI S g,
pEM,, PEM, ,k2>2

As the series ) ap(tp;,ﬁ,n)p_“(s“_ﬁ) is absolutely convergent, we
peEP,k>2
only need to show the convergence of

—2mifyp
lim E (’Ol
n—o00 S+1—*
pEM,,
But since ¢ is a class function on G and x1,..., X is a basis of the class
: R Y- .
functions: ¢ =37, 70X,
—2mifyp k —2mifyp
. of ( . X (
lim E LA S E rjl(hm E ATASS F
n—00 S+1*— / 7 Y n—oo S+1,E
pEMy, Jj=1 pEMp,

Since we have now proved that the logarithms of the sequences of func-
tions Ly, (s+1—4%,0,¢7), L, (s+1— 4%, 6,4} converge, it is clear that
the sequences themselves converge to some holomorphic functions fer, fyr
with for # 0 and fy;(s) # 0 on [s| < 7.

Therefore the conditions in Corollary 2 are fulfilled and the theorem is

proved. |
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4. CONSEQUENCES

THEOREM 4.6. Let K1,...,K, be finite normal extensions of Q with
KiﬁKj:QfOTi#j .
If for a continuous function f(x1,...,x,) the following equation

stC\{O}f(CIﬁ (5)7 SRR CKT (5)) =0

holds, then

~
1l
=

Proof. We have [7, p.547]

Cre(s) = C(s) [ Lis0x,
xX#1

where the product is taken over all non-trivial irreducible characters of the
Galois group of the normal extension K/Q.

These characters x and the character 1 = idg(k/qg) are a basis of the class
functions on the group G := Gal(K/Q).

Let K be the smallest field that contains all K,..., K,. K is a finite nor-
mal extension of Q. The corresponding irreducible characters of Gal(K;/Q)
may be regarded as characters of Gal(K/Q) since

Gal(K/Q) = H; Gal(K;/Q) is a direct product. Let a € C" be any point
for which f(ay,...,a,) # 0, then there is an open subset U C C" contain-
ing a, on which f(z1,...,x,) # 0. Therefore we may suppose that a; # 0.
By Theorem 1.1 we find for every € > 0 a value s € C, such that

I}élXKK]‘ (s) — aj] < ¢, that is (Cx,($),--.,Ck,(s)) € U for small e. This

completes the proof. |

In general we cannot prove that for different Galois extensions K; of Q the
corresponding Dedekind-(-functions are algebraically independent. For ex-
ample the field K := Q(&), where £ is a primitive 8—th root of unity. This
extension has 3 different subextensions K; of degree 2 over Q. Then we
find (KC(é = (K, (K, CK, as an algebraic relation.
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More generally as (k(s) = ((s) [[,.. L(s,x)XW) for every normal field it
is clear that if G := Gal(K/Q) has more normal subgroups than con-
jugacy classes, then there is a non-trivial algebraic relation between the
corresponding (-functions.

Further algebraic relations are discussed in the article of Richard Brauer

THEOREM 4.7. Suppose that we have finite normal extensions K;/Q,

J =1,...,n and the corresponding functions (k, do not satisfy any non-
trivial algebraic relation.
Then for every continuous function f(z1,...,x,) on C* the relation

f(Ckyy---,Ck,) =0 implies f = 0.

Proof. To prove this, let K be the minimal subfield of C containing all
Ky, ..., K,. We may regard all the characters as characters of

G = Gal(K/Q) as Gal(K;/Q) =2 G/Nj for a unique normal subgroup

Nj aG@.

Then for the (-functions we have (x;, = ((s) Hwé1 L(s,x)X), where the
product is taken over all characters x with x(z) = x(1) for all 2 € Nj.

By theorem 1.1 we can approximate all values y1 # 0,y, # 0 simultane-
ously by ((s) and the L(s, x) by taking a suitable s € C\ {1}.

To prove the theorem it has to be shown that the same holds for the
Xk, =1 Hwé1 Yy (the product is taken only over all characters x with
x(z) = x(1) for all z € Nj): i.e., every set of non-zero values
Xk;,j=1,...,n can be simultaneously approximated.

Taking the logarithms log Xk, = logy: +>_, ; logy, ( each sum is taken
over all x with x(z) = x(1) for all # € N;) the statement is clear if the
right sides of these equations are linearly independent.

But if these equations were not linearly independent, then there would be a

relation 0 = ) m; (10g Y1+ ZXij log yX> with integers m; # 0 for all j.
j=1

This would result in an algebraic relation H?Zl C;?jj (s) = 1 between the

CK]" I

THEOREM 4.8. Let K/Q be a normal extension, (x the corresponding
Dedekind-C-function. If f(x1,...,xm) is any continuous function, then

the differential equation f(Cx,Clk, .- .,Cﬁ(m)) = 0 implies f = 0.
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Proof. By (x = ((s) ]_[X7é1 L(s,x)X") we may reduce the proof to the
proof of the following statement:

For every continuous function g the equation

g(C(s), ..., M) (s), L(s,x),..., L") (s,x),...) = 0 implies that g = 0.
Suppose that g(ao,...,ax,a0X;...,ar (X),...) # 0. Because g is contin-
uous we may assume that ag # 0,a9x # 0,... and that on an open set
containing (ao, ..., ak,aoX,...,ak, (x),...) the function g is non-zero.

By the continuous dependence of the derivatives of an analytic function on
compact domains, which is implied by Cauchy’s formula, we only need to
approximate the polynomial ap + 3}s+... 3% sk by ((s+1— ﬁ +it) and the
polynomials ag (X)+%s+. .. “’“k—(!")skx by the functions L(s+1— 4z +it, x)
with suitably chosen ¢ € R according to theorem 1.1. If ag and the ag(x)
are nonzero we can always suppose (by choosing r < ﬁ sufficiently small)
that these polynomials are non-zero in the disc |s| < 7.

As the function g is nonzero in an open set containing the point

(ag, - --,a0(x),--.) this contradicts

g(C(s),.-. ,((k)(s),L(s,X), .. .,L(kx)(s,x), .)=0. 1
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