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We generalize a theorem of Voronin [4℄ on the joint distribution of non-zero

values of Diri
hlet L-Fun
tions to Artin-L-Fun
tions. As a 
onsequen
e we get

the di�erential independen
e of �-fun
tions of normal extensions of Q.

1. MAIN THEOREM

We prove the following statement on Artin-L-series over Q:

Theorem 1.1. Let K be a �nite Galois-extension of Q and �

1

; : : : ; �

n

lin-

early independent 
hara
ters of the group G := Gal(K=Q). Let k := #G

and f

1

(s); : : : ; f

n

(s) be holomorphi
 fun
tions on jsj < r and 
ontinuous on

jsj � r, where r is a �xed number 0 < r <

1

4k

. Further suppose f

j

(s) 6= 0

on jsj � r.

Then for every � > 0 there is a set A

�

� R su
h that

lim inf

T�!1

vol(A

�

\ (0; T ))

T

> 0

and for j = 1; : : : ; n

1
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8

t2A

�

8

jsj�r

: jL(s+ 1�

1

4k

+ it; �

j

)� f

j

(s)j < �;

where L(z; �

j

) denotes the 
orresponding Artin-L-series.

As a 
onsequen
e we �nd 
onditions for the fun
tional independen
e of

Dedekind-�-fun
tions (Theorems 4.6 and 4.7) and the di�erential indepen-

den
e of Dedekind-�-fun
tions (Theorem 4.8).

2. PREPARATION

Denote by P the set of rational primes.

Definition 2.1. Suppose that

F (s) =

Y

p2P

f

p

(p

�s

)

where f

p

(z) is a rational fun
tion and the produ
t 
onverges absolutely for

Re(s) > 1.

Then for any �nite set M � P of primes and for any � 2 R

P

we de�ne

F

M

(s; �) :=

Y

p2M

f

p

(p

�s

e

�2�i�

p

):

Lemma 2.1. Suppose that F

1

(s); : : : ; F

n

(s) are analyti
 fun
tions whi
h

are represented by produ
ts

F

j

(s) =

Y

p2P

f

p;j

(p

�s

)

for Re(s) > 1,where f

p;j

(z) = 1 +

1

P

m=1

a

(m)

p;j

z

m

are rational fun
tions of z

without poles in the dis
 jzj < 1. For all � > 0 there are 
onstants 
(�) > 0

with
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ja

(m)

p;j

j � 
(�)p

m�

:

Further suppose that they have an analyti
 
ontinuation to the plane

Re(s) > 1� 1=2k with at most one simple pole at s = 1.

Assume that

1

T

T

Z

�T

jF

j

(� + it)j

2

dt

is uniformly bounded for � 2 (�; 1) and T 2 R

+

, if � 2 (1�

1

2k

; 1) is �xed.

Let M

1

�M

2

� : : : be �nite sets of primes with P =

S

1

j=1

M

j

.

Suppose lim

j�>1

F

j;M

j

(s; �

j

) = f

j

(s) uniformly in js� (1�

1

4k

)j � r <

1

4k

.

Then for any � > 0 there exists a set A

�

� R su
h that for all j and

all t 2 A

�

max

js�(1�

1

4k

)j�r

jF

j

(s+ it)� f

j

(s)j < �

and

lim inf

T�!1

vol(A

�

\ (0; T ))

T

> 0:

Corollary 2.1. Let G

m

(s) :=

Q

b=N

m

b=1

F

m;b

(s)=

Q

b=N

�

m

b=1

F

�

m;b

(s). Suppose

that the fun
tions F

m;b

(s); F

�

m;b

(s) satisfy the 
onditions of Lemma 1.

Assume that lim

j�>1

G

m;M

j

(s; �

j

) = f

m

(s) and lim

j�>1

F

m;b;M

j

(s; �

j

; ) = f

m;b

(s).

Under the further 
ondition that max

m;b;s

jf

m;b

(s)j > 0 and

f

m

(s) =

Q

b=N

m

b=1

f

m;b

(s)=

Q

b=N

�

m

b=1

f

�

m;b

(s) for jsj � r we have:

For any � > 0 there is a set B

�

� R su
h that for all m and all t 2 B

�

max

js�(1�

1

4k

)j�r

jG

m

(s+ it)� f

m

(s)j < �
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and

lim inf

T�!1

vol(B

�

\ (0; T ))

T

> 0:

Proof. The proof of the lemma is 
ompletely analogous to Voronin's proof

in [4, p.256℄.

Lemma 2.2. Let 0 < r <

1

4k

and �

1

; : : : ; �

n

be linearly independent non-

abelian 
hara
ters of G := Gal(K=Q) where K is a �nite normal algebrai


extention of Q. Let k := #G.

Suppose that f

1

(s); : : : ; f

n

(s) are analyti
 for jsj < r and 
ontinuous for

jsj � r and not zero on the dis
 jsj � r. Then for every pair � > 0 and

y 2 R

+

there exists a �nite set of primes M 
ontaining all primes smaller

than y and � 2 R

P

su
h that:

n

max

j=1

max

jsj�r

jL

M

(s+ 1�

1

4k

; �

j

; �)� f

j

(s)j < �

For the proof we need the following theorem on 
onditionally 
onvergent

series

Theorem 2.2. [4, p.352℄ Suppose that a series of ve
tors

1

P

n=1

u

n

in a real

Hilbert spa
e H satis�es

1

P

n=1

ku

n

k

2

< 1 and for every e 2 H with e 6= 0

the series

1

P

n=1

hu

n

; ei 
onverges 
onditionally.

Then for any v 2 H there is a permutation � of N so that

1

P

n=1

u

�(n)

= v in

the norm of H.

and a theorem of Artin:

Theorem 2.3 (Artin). [2, p.122℄ If �(C

j

; x) is the number of primes in

the 
lass C

j

smaller than x then: �(x;C

j

) =

h

j

k

x

R

2

dt

log t

+ O(xe

�a log

1=2

x

)

where a is some positive 
onstant, k = #G and h

j

:= #C

j

.
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Theorem 2.4 (Paley-Wiener). [1, p.166℄ Let F be an entire fun
tion.

Then the following statments are equivalent:

(1)

Z

1

�1

jF (x)j

2

dx <1 and lim sup

z2C

jF (z)e

�(�+�)jzj

j <1 for every � > 0

(2) there is a fun
tion f 2 L

2

(�;��) su
h that F (z) =

1

p

2�

Z

�

��

f(u)e

iuz

du

Theorem 2.5 (Markov). [1, p.314℄ Let P be a polynomial of degree � n.

Then max

jxj�1

jP

0

(x)j � n

2

max

jxj�1

jP (x)j:

Proof (of Lemma 2.2).

Choose 
 > 1 su
h that 


2

r <

1

4k

and

8

j

: max

jsj�r

jf

j

(s)� f

j

(s=


2

)j < �

Be
ause f

j

(s) 6= 0 we 
an write

f

j

(s) = exp(g

j

(s)) for some g

j

(s) analyti
 in jsj < 


2

r:

Hen
e it is suÆ
ient to prove the Lemma for the logarithms of the fun
-

tions.

For Artin-L-series L(s; �

j

) the Euler-fa
tors are de�ned by

1= det(E

k

j

��

j

(�

p

)p

�s

), where �

p

is one of the 
onjugate Frobenius-automorphisms

over p 2 P and �

j

: G �! GL

k

j

(C ) is a representation of G with

�

j

(�) = tra
e(�

j

(�)).

For the Euler-fa
tors of L

M

(s

0

; �

j

; �) we get:

� logL

p

(s

0

; �

j

; �) =

tra
e(�

j

(�

p

)) exp(�2�i�

p

)

p

s

0

+

X

m�2

a

m;p

p

�ms

0
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The �rst term is

�

j

(�

p

) exp(�2�i�

p

)

p

s

0

. Therefore

� logL

M

(s

0

; �

j

; �) =

X

p2M

�

j

(�

p

)e

�2�i�

p

)

p

s

0

+

X

p2M

X

m�2

a

m;p

p

�ms

0

The se
ond term is a uniformly and absolutely 
onvergent series for all

primes in Q.

We de�ne a real Hilbert spa
e H

(R)

n

of holomorphi
 fun
tions on the dis


jsj � R with the s
alar produ
t

h(h

j

)

n

j=1

; (f

j

)

n

j=1

i := Re

Z

jsj�R

n

X

j=1

f

j

(s)h

j

(s)d�dt:

Set R := 
r (
 < 1) and �

p

(s) := (

�

j

(�

p

) exp(�2�i�

p

)

p

s

0

)

n

j=1

, where

s

0

= s+ 1�

1

4k

with jsj � R.

Denote the di�erent 
onjuga
y 
lasses of the group G by C

1

; : : : ; C

N

. Obvi-

ously n � N sin
e N is the dimension of the ve
torspa
e of 
lass fun
tions

on G.

Denote the di�erent prime 
lasses by P

j

:= fp j �

p

2 C

j

g.

To de�ne �: In the natural order of the sets P

j

su
h that

p

j;1

< p

j;2

< p

j;3

: : : set �

p

j;l

:=

l

4

. Thereby �

p

is de�ned for all primes.

We will use the above Theorem 2.2 on 
onditionally 
onvergent series in

Hilbert spa
es.

We only need to show that the series �

p

; p 2 P ful�lls the 
onditions of this

theorem:

P

p2P

k�

p

k

2

� kn

P

p2P

p

1

2k

�2+2R

<1. (obviously

1

2k

� 2 + 2R < �(1 + �

1

) for

some small �

1

)

For e we 
an 
hoose any '(s) 2 H

R

n

with k'(s)k := h'(s); '(s)i

1=2

= 1.

Now we have to show that

X

p2P

h�

p

; '(s)i
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is 
onditionally 
onvergent or equivalently,

that there exist two sets of primes P

+

and P

�

su
h that

8

p2P

+

: h�

p

; '(s)i > 0,

P

p2P

+

h�

p

; '(s)i =1, and

P

p2P

�

h�

p

; '(s)i = �1, 8

p2P

�

: h�

p

; '(s)i < 0.

We 
ompute:

h�

p

; 'i = Re

Z

jsj�R

n

X

j=1

�

p;j

(s)'

j

(s)d�dt

= Re

Z

jsj�R

n

X

j=1

�

j

(�

p

)e

�2�i�

p

p

�s

0

'

j

(s)d�dt

= Re

�

e

�2�i�

p

Z

jsj�R

p

�(s+1�

1

4k

)

�

n

X

j=1

�

j

(�

p

)'

j

(s)

�

d�dt

�

It follows that

lim

p�>1

jh�

p

; 'ij = 0:

Sin
e the 
hara
ters �

j

are linearly independent, there is a 
lass C

l

in G

su
h that '

0

:=

n

P

j=1

�

j

(�

p

)'

j

(s) 6� 0 for all �

p

2 C

l

.

As the fun
tions '

j

are holomorphi
 in the dis
 jsj � R, we have

'

0

(s) =

1

P

m=0

�

m

s

m

.

For p 2 C

l

we have

h�

p

; 'i = Re

�

e

�2�i�

p

Z

jsj�R

exp

�

� log(p)(s+ 1�

1

4k

)

�

'

0

(s)d�dt

= Re

�

e

�2�i�

p

�(log p)

�

Here �(x) :=

R

jsj�R

exp

�

� x(s+ 1�

1

4k

)

�

'

0

(s)d�dt.
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Therefore

�(x) = exp

�

� x(1�

1

4k

)

�

Z

jsj�R

exp(�xs)'

0

(s)d�dt

= �R

2

exp

�

� x(1�

1

4k

)

�

1

X

m=0

(�1)

m

�

m

(xR

2

)

m

(m+ 1)!

We have

k'

0

k

2

=

Z

jsj�R

j'

0

j

2

d�dt = �R

2

1

X

m=0

j�

m

j

2

R

2m

m+ 1

:

Using the 
ontinuous linear form L((f

j

)

n

j=1

) :=

n

P

j=1

�

j

(C

l

)f

j

we get

k'

0

k

2

= kL(')k

2

� kLk

2

k'k

2

= kLk

2

:

This gives:

�R

2

1

X

m=0

j�

m

j

2

R

2m

m+ 1

= k'

0

k

2

� kLk

2

:

Setting �

m

:= (�1)

m

R

m

�

m

=(m + 1) we get

1

P

m=0

j�

m

j

2

� kLk

2

=(�R

2

),

whi
h gives us an upper bound for j�

m

j.

Set

F (u) :=

1

X

m=0

�

m

m!

u

m

:

F (u) is an entire fun
tion. For any Æ > 0 there is a sequen
e u

n

�! 1

su
h that

jF (u

n

)j > exp

�

� (1 + 2Æ)u

n

�

:

Suppose the 
ontrary. Then for all u 2 R, some A > 0 and some small

Æ > 0

je

(1+Æ)u

F (u)j < Ae

�Æjuj

:
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Be
ause

je

(1+Æ)z

F (z)j � e

3jzj

we have for all z 2 C

and as e

(1+Æ)z

F (z) is entire, by Theorem 2.4 we obtain a fun
tion f with

support in (�3; 3) su
h that

e

(1+Æ)z

F (z) =

1

p

2�

1

Z

�1

f(u)e

iuz

du:

Be
ause je

(1+Æ)u

F (u)j � Ae

�Æjuj

for u 2 R, we get

f(z) =

1

p

2�

1

Z

�1

e

(1+Æ)u

F (u)e

�izu

du;

where the equality holds almost everywhere for z 2 R. This integral 
on-

verges absolutely for jIm(z)j � Æ=2. So it de�nes an analyti
 fun
tion near

the real axis. Therefore the support of f in R 
an not be in the interval

(�3; 3). This 
ontradi
ts the assumption.

We have �(x) = �R

2

exp

�

� x(1 �

1

4k

)

�

F (xR). Set x

n

:= u

n

=R. Then

j�(x

n

)j > exp

�

� (1� Æ

0

)x

n

�

for Æ

0

> 0 suÆ
iently small.

As a 
onsequen
e we �nd subintervals I

n

of [x

n

�1; x

n

+1℄ of length greater

than

1

2x

8

n

in whi
h one of the the inequalities

jRe�(x)j >

e

�(1�Æ

0

)x

200

or

jIm�(x)j >

e

�(1�Æ

0

)x

200

holds.

To prove this we approximate � by polynomials. Set N := [x

n

℄ + 1. Let

B be an upper bound of the j�

m

j. This gives jF (xR)j � Be

xR

. For

x 2 [x

n

� 1; x

n

+ 1℄ we have (remember R < r < 1=4k)

j

1

X

m=N

2

�

m

m!

(xR)

m

j � B

1

X

m=N

2

1

m!

(xR)

m

� B

(xR)

N

2

N

2

!

1

X

m=0

1

m!

(xR)

m

� B

N

N

2

N

2

!

e

N

� B

�

N

N

2

=e

�

N

2

e

N

� B

e

N

2

+N

N

N

2

� e

�2x

n
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if x

n

is suÆ
iently large.

Similarly for x 2 [x

n

� 1; x

n

+ 1℄ we have

1

X

N

2

=m

�

� (1�

1

4k

)x

�

m

m!

� e

�2x

n

and exp

�

� (1�

1

4k

)x

�

� e

(1�

1

4k

)x

:

Hen
e F (xR) = P

1

(x)+O(e

�2x

n

) and exp (�(1�

1

4k

)x) = P

2

(x)+O(e

�2x

n

),

where P

1

and P

2

are polynomials of degree N

2

. This gives

�(x) = P

n

(x) + O(e

�x

n

) all N = [x

n

℄ + 1 and x 2 [x

n

� 1; x

n

+ 1℄, where

P

n

(x) is a polynomial of degree less than N

4

.

Sin
e j�(x

n

)j > exp

�

�(1�Æ

0

)x

n

�

we have

1

2

e

�(1�Æ

0

)x

n

� jP

n

(x

n

)j for large

n. Set a := max

jx�x

n

j�1

jP

n

(x)j. Then there exists a � 2 [x

n

� 1; x

n

+ 1℄

su
h that a = jP

n

(�)j. There exists a � 2 (�; x) or � 2 (x; �) su
h that

jP

n

(�)�P

n

(x)j = jP

0

n

(�)(x��)j. Set � := j��xj=N

8

. Then by theorem 2.5

we have jP

n

(�)� P

n

(x)j � �a. If � � 1=2 then j1�

P

n

(x)

P

n

(�)

j � 1=2, therefore

jP

n

(x)j �

a

2

�

jP

n

(x

n

)j

2

�

1

4

e

�(1�Æ

0

)x

n

for all x with jx � �j �

1

2N

8

. It

follows that j�(x)j �

1

8

e

�(1�Æ

0

)x

n

�

1

8e

2

e

�(1�Æ

0

)x

�

1

100

e

�(1�Æ

0

)x

for large

n.

For p

r

2 P

l

, and p

1

< p

2

< : : : < p

r

< : : : we have �

p

r

= r=4 whi
h gives

e

�2�i�

p

r

= i

r

. Therefore

h�

p

r

; 'i = Re(i

r

�(log(p

r

))):

One of the inequalities above is satis�ed in�nitely often. Consider the

interval I

n

:= [�+ �; �℄ su
h that on I

n

one of the inequalities

jIm(�(x))j �

1

200

e

�(1�Æ

0

)x

or jRe(�(x))j �

1

200

e

�(1�Æ

0

)x

holds and

� �

1

2x

8

n

.

By theorem 2.3 the number of primes p 2 P

l

for whi
h log p 2 I

n

is:

�(e

�+�

; C

j

)� �(e

�

; C

j

) =

h

j

k

e

�+�

Z

e

�

dt

log t

+O(e

�+�

e

�a�

1=2

)

�

h

j

k

e

�

�

e

�

� 1

�+ �

+O(

e

�

e

a�

1=2

)

�

Sin
e � >

1

2x

8

n

, for x

n

suÆ
iently large we get

�(e

�+�

; C

j

)� �(e

�

; C

j

) �

h

j

k

e

x

n

x

10

n
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The number of primes p in the interval I

n

with exp(�2�i�

p

) = 1;

exp(�2�i�

p

) = �1; exp(�2�i�

p

) = i; or exp(�2�i�

p

) = �i is therefore

more than

h

j

k

e

x

n

4x

10

n

.

Therefore

X

p2P

l

\I

n

Re(e

�2�i�

p

�(log p))>0

h�

p

; 'i > 


1

e

Æ

0

x

n

=2

for some positive 
onstant 


1

. The same holds for a subset of primes with

Re(e

�2�i�

p

�(log p)) < 0, the sum is less than 


1

e

Æ

0

x

n

=2

. As x

n

�! 1 the


orresponding series diverge to +1 and �1.

Theorem 2.1. Assume that a Diri
hlet series

1

P

n=0

a

n

n

�s

satis�es

a

n

= O

�

(n

�

) for every � > 0. Suppose that this series 
onverges for

Re(s) > 1 absolutely and 
an be analyti
ally 
ontinued to the 
omplex plane

and has no pole for Re(s) � 1=2 ex
ept a simple pole at s = 1. Denote

this fun
tion by f(s). Suppose further that jf(s)j

2

= O(jtj

M

) for some

M :=M(a; b) 2 R and s = �+ it where jtj � 1 and � 2 [a; b℄ with a; b 2 R.

Then

1

T

T

R

�T

jf(s+ it)j

2

dt is bounded for every s with Re(s) > 1� 1=M and

it is uniformly bounded for all s with Re(s) � � where 1 > � > 1� 1=M is

some �xed number. We 
an 
hoose M = inffmjf(s) = O(jtj

m

)g.

Proof. Obviously there is a � > 0 su
h that

1

T

T

Z

�T

jf(s)j

2

dt = O(T

�

)

(take for example � :=M + 1).

We denote the in�mum of those � by �.

Using a Lemma in [8, p.151℄, we get for Re(s) > 1, (Æ > 0; 
 > 1; 
 > �)
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1

X

n=0

a

n

n

s

e

�Æn

=

1

2�i


+i1

Z


�i1

�(w � s)f(w)Æ

s�w

dw:

Be
ause of the 
ondition a

n

= O

�

(n

�

) the series on the left side of the

equation is absolutely 
onvergent for all Re(s) > 0 and therefore it is a

holomorphi
 fun
tion in this plane. By Stirling's formula on the �-fun
tion

we get j�(s)j � C

[a;b℄

jtj

��1=2

exp(�

�

2

jtj), where s = � + it and � 2 [a; b℄.

Therefore it follows from Cau
hy's theorem, that the fun
tion

1

2�i


+i1

R


�i1

�(w � s)f(w)Æ

s�w

dw is an analyti
 fun
tion for all 
 > 0 and

Re(s) > 0, if � > � > � � 1. We have

1

2�i


+i1

Z


�i1

�(w � s)f(w)Æ

s�w

dw =

1

2�i

�+i1

Z

��i1

�(w � s)f(w)Æ

s�w

dw + f(s) + Res

w=1

�(w � s)f(w)Æ

s�w

Set B := Res

s=1

f(s). Then we �nd for f the expression

f(s) =

1

X

n=1

a

n

n

s

e

�Æn

�

1

2�i

�+i1

Z

��i1

�(w � s)f(w)Æ

s�w

dw �B�(1� s)Æ

s�1

;

where Re(s) � 1=2; � > � > � � 1.

Denote the �rst term on the right of the last equation by Z

1

and the se
ond

term by Z

2

.

We have B�(1� s)Æ

s�1

= O(jtj

1���1=2

e

�

�

2

jtj

Æ

��1

). This implies

B�(1� s)Æ

s�1

= O(jtj

�=2

e

�

�

2

jtj

) if Æ � jtj

��=2

; jtj � 1 and 1=2 � � � 1.

If � � a > 1=2 then
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T

Z

T=2

jZ

1

j

2

dt = O(T

1

X

m=1

ja

m

j

2

m

�2a

e

�2Æm

) +O

�

X

m 6=n

a

m

a

n

e

�(m+n)Æ

m

�

n

�

j log(m=n)j

�

= O

a

(T ) +O(Æ

2��2��

)

for some small � > 0 sin
e a

n

= O(n

�

).

Set w := �+ iv. We obtain

jZ

2

j �

Æ

���

2�

1

Z

�1

j�(w � s)f(s)jdv

�

Æ

���

2�

�

1

Z

�1

j�(w � s)jdv

1

Z

�1

j�(w � s)f

2

(w)jdv

�

1=2

:

As the �rst integral is just an integral over the �-fun
tion, it is bounded.

Assume T � jtj (re
all that s = � + it). Set I

T

:= (�1;�2T ℄ [ [2T;1):

Z

I

T

j�(w � s)f

2

(w)jdv = O

�

Z

I

T

e

�

2

jv�tj

jvj

�2M

dv

�

= O

�

e

�

�

3

T

�

Hen
e

T

Z

T=2

jZ

2

j

2

dt = O

�

Æ

2��2�

T

2

O(e

�

�

3

T

) + Æ

2��2�

2T

Z

�2T

jf(w)j

2

(

T

Z

T=2

j�(w � s)jdt)dv

�

= O(Æ

2��2�

) +O

�

Æ

2��2�

2T

Z

�2T

jf(w)j

2

dv

�

= O

�

Æ

2��2�

T

1+2M

�

This gives (the bound above is uniform for � � a):



14 H.BAUER

T

Z

T=2

jf(s)j

2

dt = O(T ) +O(Æ

2��2���

) +O(Æ

2��2�

T

1+�+�

):

Set Æ := T

�

1

2

(

1+�

1��

)

, then for � > 1�

1��

1+�

we get

T

Z

T=2

jf(s)j

2

dt = O

a

(T ):

Adding up

T

R

T=2

jf(s)j

2

dt+

T=2

R

T=4

jf(s)j

2

dt+

T=4

R

T=8

jf(s)j

2

dt+ : : : gives

T

R

1

jf(s)j

2

dt = O

a

(T ) and analogously

1

R

�T

jf(s)j

2

dt = O

a

(T ).

For � �! 0 andM �! 1+� we get Re(s) > 1�

1

M

as a suÆ
ient 
ondition

for

1

T

T

R

�T

jf(s+ it)j

2

being bounded.

Remark 2.1. For He
ke-L-series over a �eld k with Q � k � K, where

K is a �nite normal extension of Q the 
onditions of the Theorem 2.1 are

satis�ed with M = [K : Q℄.

Proof. Denote the Diri
hlet-
oeÆ
ients of the He
ke-L-series L(s; �) by

a

n

(�) and the Diri
hlet 
oeÆ
ients of �

k

by a

n

. Then we have ja

n

(�)j � a

n

,

where a

n

is the number of ideals of norm n in the ring of integers of k.

Therefore we have ja

n

j = O

�

(n

�

).

Every He
ke-L-series satis�es a fun
tional equation.

�(s; �) := C

s

�(

s+1

2

)

a

�(

s

2

)

r

1

�a

�(s)

r

2

L(s; �);

where r

1

is the number of real embedings of k, r

2

the number of 
omplex

embedings of k, a is the number of in�nite pla
es of the 
ondu
tor of �

and C 2 R

>0

is a 
onstant. Then r

1

+ 2r

2

= [k : Q℄ � [K : Q℄. We have

�(s; �) = W�(1� s; �), where W is a root of unity. L(s; �) is a holomor-

phi
 fun
tion for all s 2 C , if L(s; �) 6= �

k

. If L(s; �) = �

k

there is a simple



VALUE DISTRIBUTION OF ARTIN-L-SERIES 15

pole at s = 1.

By a theorem of Lavrik [6, (p.133: Lemma 2.1)℄ we have:

�(s; �) =




s(1�s)

+

1

P

n=1

(a

n

f(

C

n

; s)+W �a

n

f(

C

n

; 1� s)), where 
 is a 
onstant

for �

k

and zero in all other 
ases.

f(x; s) =

1

2�i

Æ+1i

R

Æ�1i

x

z

�(

z+1

2

)

a

�(

z

2

)

r

1

�a

�(z)

r

2

dz

z�s

, where Æ 2 R and

Æ > maxfRe(s); 0g. If we take Æ > maxfRe(s) + 1; 0g, then

jf(x; s)j �

x

Æ

2�

 

1

R

�1

r

1

Q

k=1

j�(

Æ+it+s

k

2

)j

!

j�(Æ + it)j

r

2

dt = C

Æ

x

Æ

But this means for Re(s) 2 [�1; 2℄ that j�(s; �)j � C

Æ

2

P

n2N

ja

n

(�)j

1

n

Æ

,

where Æ > 3. Therefore j�(s; �)j � 2C

Æ

�

k

(4). The same holds for �

k

if

we suppose that jIm(s)j is big enough, su
h that we 
an ignore




s(1�s)

.

By the well known properties of the �-fun
tion we get therefore L(s; �) =

O(exp(Ajtj) and �

k

(s) = O(exp(Ajtj) for every �xed strip Re(s) 2 [a; b℄,

Im(s) = t and some A 2 R

>0

. To apply the Phragmen-Lindeloef-prin
iple

[5℄, we must show that we have L(s; �) = O(jtj

M

)on the bordersRe(s) = ��

and Re(s) = 1 + � for large t = Im(s) and every �xed small � > 0.

This would imply that L(s; �) = O(jtj

M

) for all Re(s) 2 [��; 1 + �℄ and

jIm(s)j = jtj > 1.

Then the series L(s; �) and �

k

(s) 
onverges absolutely for all s with Re(s) =

1 + � and we have jL(s; �)j � �

k

(1 + �) and

j�

k

(s)j � �

k

(1+ �). This is an absolute 
onstant independent of Im(s) = t.

By the fun
tional equation we �nd that jL(s; �)j = O

�

�

g(jtj)

�

and j�

k

(s)j =

O

�

�

g(jtj)

�

for s with Re(s) = ��, where

g(jtj) = j�(

s+1

2

)

a

�(

s

2

)

r

1

�a

�(s)

r

2

=�(

1�s+1

2

)

a

�(

1�s

2

)

r

1

�a

�(1� s)

r

2

j:

Stirling's formula gives j�(s)j = O

�

jtj

��1=2

exp(�

�

2

jtj)

�

, where the 
onstant

in the big O depends only on the interval � 2 [a; b℄ with s = � + it.

Therefore it follows: g(jtj) = O

�

jtj

r

1

2

�

2

jtj

r

2

2�

�

= O

�

jtj

�[k:Q℄

�

. We had

Re(s) = 1+�. This means that in the strip � 2 [��; 1+�℄ we have L(s; �) =

O(jtj

M

�

) and �

k

(s) = O(jtj

M

�

) with M

�

= (1+ �)[k : Q℄. Then the in�mum

is obviously [k : Q℄.
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3. PROOF THE MAIN THEOREM

Proof (of theorem 1.1). The theorem of Brauer [7, p.544℄ states that every


hara
ter is a �nite linear 
ombination � =

P

l

n

l

'

�

l

�

P

l

m

l

 

�

l

, where '

�

l

,

and  

�

l

are indu
ed from 
hara
ters '

l

;  

l

of degree 1 of subgroups of G.

With this theorem Brauer proved, that L(z; �) =

m

1

Q

l=1

L(z; '

l

)

.

n

1

Q

l=1

L(z;  

l

),

where the series L(z; '

l

) and L(z;  

l

) are He
ke-L-series over number �elds


ontained in K. These are entire fun
tions with the only ex
eption of the

Dedekind-�-fun
tions whi
h have a simple pole at z = 1. Therefore the


onditions of Lemma 2.1 are satis�ed. Choose the sets M

�

� P a

ording

to Lemma 2.2.

Then we have to show that the 
onditions in Corollary 2 are ful�lled.

If the 
hara
ters �

1

; : : : ; �

n

are not yet a basis of the 
lass fun
tions of

G, then add some more 
hara
ters (for example from the set of irredu
ible


hara
ters of G). Choose additional holomorphi
 fun
tions f

j

, for example


onstants 6= 0, that satisfy the 
onditions of Lemma 2.2.

As we now have a basis of 
lass fun
tions, every 
hara
ter �

�

l

;  

�

l


an be

expressed as a linear 
ombination of this basis.

We have jL

M

�

(s+ 1�

1

4k

; �; �

j

)� f

j

(s)j < �.

Now 
hoose a sequen
e �

n

:= 1=n, y

n

:= maxM

n�1

(y

0

:= 1), �

n

2 R

P

and M

n

� P su
h that Lemma 2.2 with � = 1=n, y := y

n

and M = M

n

is

satis�ed. M

n

�M

n+1

is a 
onsequen
e.

Then be
ause of lim

n�>1

L

M

n

(s + 1 �

1

4k

; �

n

; �

j

) = f

j

(s) and f

j

(s) 6= 0, we

get:

lim

n�>1

�

X

p2M

n

�

j

(�

p

)e

�2�i�

p

p

s+1�

1

4k

+

X

p2M

n

;��2

a

p

(�

j

; �; �)p

��(s+1�

1

4k

)

�

= log f

j

(s);

where the se
ond sum represents an absolutely 
onvergent series for p 2 P.

For every 
hara
ter � := �

j

we have
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L

M

n

(s+ 1�

1

4k

; �; �) =

Q

m

1

l=1

L

M

n

(s+ 1�

1

4k

; �; '

�

l

)

Q

n

1

l=1

L

M

n

(s+ 1�

1

4k

; �;  

�

l

)

;

and

log

�

L

M

n

(s+ 1�

1

4k

; �; '

�

l

)

�

=

X

p2M

n

'

�

l

(�

p

)e

�2�i�

p

p

s+1�

1

4k

+

X

p2M

n

;��2

a

p

('

�

j

; �; �)p

��(s+1�

1

4k

)

:

As the series

P

p2P;��2

a

p

('

�

j

; �; �)p

��(s+1�

1

4k

)

is absolutely 
onvergent, we

only need to show the 
onvergen
e of

lim

n!1

X

p2M

n

'

�

l

(�

p

)e

�2�i�

p

p

s+1�

1

4k

:

But sin
e '

�

l

is a 
lass fun
tion on G and �

1

; : : : ; �

k

is a basis of the 
lass

fun
tions: '

�

l

=

P

k

j=1

r

j;l

�

j

,

lim

n!1

X

p2M

n

'

�

l

(�

p

)e

�2�i�

p

p

s+1�

1

4k

=

k

X

j=1

r

j;l

�

lim

n!1

X

p2M

n

�

j

(�

p

)e

�2�i�

p

p

s+1�

1

4k

�

:

Sin
e we have now proved that the logarithms of the sequen
es of fun
-

tions L

M

n

(s+1�

1

4k

; �; '

�

l

); L

M

n

(s+1�

1

4k

; �;  

�

l

) 
onverge, it is 
lear that

the sequen
es themselves 
onverge to some holomorphi
 fun
tions f

'

�

l

; f

 

�

l

with f

'

�

l

6= 0 and f

 

�

l

(s) 6= 0 on jsj � r.

Therefore the 
onditions in Corollary 2 are ful�lled and the theorem is

proved.
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4. CONSEQUENCES

Theorem 4.6. Let K

1

; : : : ;K

r

be �nite normal extensions of Q with

K

i

\K

j

= Q for i 6= j .

If for a 
ontinuous fun
tion f(x

1

; : : : ; x

r

) the following equation

8

s2Cnf0g

f(�

K

1

(s); : : : ; �

K

r

(s)) = 0

holds, then

f � 0:

Proof. We have [7, p.547℄

�

K

(s) = �(s)

Y

�6=1

L(s; �)

�(1)

;

where the produ
t is taken over all non-trivial irredu
ible 
hara
ters of the

Galois group of the normal extension K=Q.

These 
hara
ters � and the 
hara
ter 1 = id

G(K=Q)

are a basis of the 
lass

fun
tions on the group G := Gal(K=Q).

Let K be the smallest �eld that 
ontains all K

1

; : : : ;K

r

. K is a �nite nor-

mal extension of Q. The 
orresponding irredu
ible 
hara
ters ofGal(K

j

=Q)

may be regarded as 
hara
ters of Gal(K=Q) sin
e

Gal(K=Q) =

Q

r

j

Gal(K

j

=Q) is a dire
t produ
t. Let a 2 C

r

be any point

for whi
h f(a

1

; : : : ; a

r

) 6= 0, then there is an open subset U � C

r


ontain-

ing a, on whi
h f(x

1

; : : : ; x

r

) 6= 0. Therefore we may suppose that a

j

6= 0.

By Theorem 1.1 we �nd for every � > 0 a value s 2 C , su
h that

r

max

j=1

j�

K

j

(s) � a

j

j < �, that is (�

K

1

(s); : : : ; �

K

r

(s)) 2 U for small �. This


ompletes the proof.

In general we 
annot prove that for di�erent Galois extensions K

j

of Q the


orresponding Dedekind-�-fun
tions are algebrai
ally independent. For ex-

ample the �eld K := Q(�), where � is a primitive 8�th root of unity. This

extension has 3 di�erent subextensions K

j

of degree 2 over Q. Then we

�nd �

K

�

2

Q

= �

K

1

�

K

2

�

K

3

as an algebrai
 relation.
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More generally as �

K

(s) = �(s)

Q

�6=1

L(s; �)

�(1)

for every normal �eld it

is 
lear that if G

K

:= Gal(K=Q) has more normal subgroups than 
on-

juga
y 
lasses, then there is a non-trivial algebrai
 relation between the


orresponding �-fun
tions.

Further algebrai
 relations are dis
ussed in the arti
le of Ri
hard Brauer

[3℄.

Theorem 4.7. Suppose that we have �nite normal extensions K

j

=Q,

j = 1; : : : ; n and the 
orresponding fun
tions �

K

j

do not satisfy any non-

trivial algebrai
 relation.

Then for every 
ontinuous fun
tion f(x

1

; : : : ; x

n

) on C

n

the relation

f(�

K

1

; : : : ; �

K

n

) � 0 implies f � 0.

Proof. To prove this, let K be the minimal sub�eld of C 
ontaining all

K

1

; : : : ;K

n

. We may regard all the 
hara
ters as 
hara
ters of

G := Gal(K=Q) as Gal(K

j

=Q)

�

=

G=N

j

for a unique normal subgroup

N

j

CG.

Then for the �-fun
tions we have �

K

j

= �(s)

Q

�6=1

L(s; �)

�(1)

, where the

produ
t is taken over all 
hara
ters � with �(x) = �(1) for all x 2 N

j

.

By theorem 1.1 we 
an approximate all values y

1

6= 0; y

�

6= 0 simultane-

ously by �(s) and the L(s; �) by taking a suitable s 2 C n f1g.

To prove the theorem it has to be shown that the same holds for the

X

K

j

:= y

1

Q

�6=1

y

�

(the produ
t is taken only over all 
hara
ters � with

�(x) = �(1) for all x 2 N

j

): i.e., every set of non-zero values

X

K

j

; j = 1; : : : ; n 
an be simultaneously approximated.

Taking the logarithms logX

K

j

= log y

1

+

P

�6=1

log y

�

( ea
h sum is taken

over all � with �(x) = �(1) for all x 2 N

j

) the statement is 
lear if the

right sides of these equations are linearly independent.

But if these equations were not linearly independent, then there would be a

relation 0 =

n

P

j=1

m

j

�

log y

1

+

P

�;K

j

log y

�

�

with integers m

j

6= 0 for all j.

This would result in an algebrai
 relation

Q

n

j=1

�

m

j

K

j

(s) = 1 between the

�

K

j

.

Theorem 4.8. Let K=Q be a normal extension, �

K

the 
orresponding

Dedekind-�-fun
tion. If f(x

1

; : : : ; x

m

) is any 
ontinuous fun
tion, then

the di�erential equation f(�

K

; �

0

K

; : : : ; �

(m)

K

) � 0 implies f � 0.
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Proof. By �

K

= �(s)

Q

�6=1

L(s; �)

�(1)

we may redu
e the proof to the

proof of the following statement:

For every 
ontinuous fun
tion g the equation

g(�(s); : : : ; �

(k)

(s); L(s; �); : : : ; L

(k

�

)

(s; �); : : :) � 0 implies that g � 0.

Suppose that g(a

0

; : : : ; a

k

; a

0

�; : : : ; a

k

�

(�); : : :) 6= 0. Be
ause g is 
ontin-

uous we may assume that a

0

6= 0; a

0

� 6= 0; : : : and that on an open set


ontaining (a

0

; : : : ; a

k

; a

0

�; : : : ; a

k

�

(�); : : :) the fun
tion g is non-zero.

By the 
ontinuous dependen
e of the derivatives of an analyti
 fun
tion on


ompa
t domains, whi
h is implied by Cau
hy's formula, we only need to

approximate the polynomial a

0

+

a

1

1!

s+ : : :

a

k

k!

s

k

by �(s+1�

1

4k

+it) and the

polynomials a

0

(�)+

a

1

(�)

1!

s+: : :

a

k

(�)

k!

s

k

�

by the fun
tions L(s+1�

1

4k

+it; �)

with suitably 
hosen t 2 R a

ording to theorem 1.1. If a

0

and the a

0

(�)

are nonzero we 
an always suppose (by 
hoosing r <

1

4k

suÆ
iently small)

that these polynomials are non-zero in the dis
 jsj � r.

As the fun
tion g is nonzero in an open set 
ontaining the point

(a

0

; : : : ; a

0

(�); : : :) this 
ontradi
ts

g(�(s); : : : ; �

(k)

(s); L(s; �); : : : ; L

(k

�

)

(s; �); : : :) � 0.
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