
ON THE COMPUTATION OF HILBERT CLASS FIELDS

M. DABERKOW AND M. POHST

Abstract. Let k be an algebraic number �eld. We describe a procedure

for computing the Hilbert class �eld �(k) of k, i.e. the maximal abelian

extension unrami�ed at all places. In the �rst part of the paper we outline

the underlying theory and in the second part we present the important

algorithms and give several examples.
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1. Preliminaries

The computation of Hilbert class �elds has been an important issue in algebraic

number theory in this century. After the connection between the j{function and

the Hilbert class �eld for imaginary quadratic �elds was established, various au-

thors [ShiTa, Sta, Deu] improved and extended this analytic way of constructing

(Hilbert) class �elds. However, it is not yet clear whether this approach is suitable

for arbitrary ground �elds.

Following the precedence of Hasse [Ha], we describe a way of computing the Hilbert

class �eld of an algebraic number �eld along the lines of the proof of the existence

theorem of class �eld theory by Kummer extensions. This is a purely algebraic

approach to the problem and can be used unconditionally. The algorithm outlined

below has been implemented under the computer algebra system KASH [Kant].

In the sequel we consider an algebraic number �eld k and compute the maximal

abelian extension �(k) of k which is unrami�ed at all places. This �eld �(k) is called

the Hilbert class �eld of k. Before we develop an algorithm for the computation of

�(k), we need to introduce some notation and state some theorems of the class �eld

theory which are of importance for this work. We adopt the notation of [Janu]. We

note, that in the special case of Hilbert class �elds the conductor is always 1. A

subgroup H of the group I

k

of all fractional ideals of k always consists of the ideals

of I

k

which are contained in the ideal classes of a subgroup

�

H of the class group

Cl

k

of k. In general, we make no distinction between

�

H and H in the sequel.

In the subsequent section we use well-known results from the class �eld theory to

reduce our task to the calculation of unrami�ed relative extensions of prime degree.

These are then computable as radical extensions if the ground �eld contains the

appropriate roots of unity. In general, we must make a detour by �rstly adjoining

suitable roots of unity to our ground �eld k, then determining class �elds over

the obtained �eld, detecting the corresponding class �elds over k and, eventually,

forming composites of those. This procedure is lined out in section 3. In section 4 we

discuss necessary re�nements of the theory to make the approach computationally

feasable. Section 5 contains several examples to demonstrate the potential of our

method.

We note that real numbers are listed with 3 decimal digits (accuracy of 10

�3

) in

our examples.

The authors wish to thank H. Koch for various hints and comments which helped

to improve this paper considerably.
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2. Reduction

For determining the Hilbert class �eld �(k) of an algebraic number �eld k we assume

that the class group Cl

k

of k is given as a direct product

Cl

k

= H

1

� :::�H

n

and that the order of H

i

is the power of a prime number. We set

~

H

j

:= H

1

� :::�H

j�1

�H

j+1

� : : :�H

n

(1 � j � n) :

Proposition 2.1. If �

j

denotes the class �eld of k corresponding to

~

H

j

(1 � j �

n), then the Hilbert class �eld of k is the composite of �

1

; :::;�

n

.

This is an immediate consequence of the existence theorem of the class �eld theory.

It reduces our task to the problem of determining class �elds for subgroups H for

which Cl

k

=

�

H is a cyclic group of prime power order. In the sequel we therefore

assume that

�

H is a subgroup of Cl

k

ful�lling this condition.

The next Theorem will be used twofold,

(i) to break down the construction of a class �eld of prime power degree p

�

into �

steps of degree p each,

(ii) for a detour via Kummer extensions.

The latter is explained in detail in Section 3.

Theorem 2.2. Let F=k be a cyclic extension, H be a subgroup of I

k

and H

F

:=

fa 2 I

F

j N

F=k

(a) 2 Hg. If E is the class �eld of F belonging to H

F

, then the class

�eld �

H

of k belonging to H is a sub�eld of E and the extension E=k is abelian. In

this case the �eld E is the composite of F and �

H

.

This result follows immediately from the base change property of the Artin symbol.

Let us assume that G is a subgroup of Cl

k

of index p

�

. Then there is an ascending

chain of subgroups

G = G

s

� G

s�1

� : : : � G

0

= Cl

k

subject to [G

i

: G

i�1

] = p (1 � i � s). The class �elds belonging to the pair

(G

s�i

; k) are denoted by �

i

. Hence, we obtain a tower of �eld extensions

k = �

0

� �

1

: : : � �

s

;

each step increasing the degree by a factor p.

Corollary 2.3. The class �eld of �

i

belonging to N

�1

�

i

=�

0

(G

s�i

) is the class �eld of

�

0

belonging to G

s�i

.



4 M. DABERKOW AND M. POHST

So far we simpli�ed our problem to that of constructing class �elds of prime degree

p belonging to subgroups of the class group of index p. This will be discussed in

the next section.

The two reductions of this section are illustrated with an example for which the

results can be checked by other methods.

Example 2.4. We consider the algebraic number �eld k = Q(�) with

�

4

� 5�

2

+ 196 = 0:

The following data were computed for k:

(1) k is totally complex,

(2) an integral basis of k is given by:

O

k

= Z+ �Z+

1

2

(�+ �

2

)Z+

1

28

(14 + 9�+ �

3

)Z

=: !

1

Z+ !

2

Z+ !

3

Z+ !

4

Z;

(3) the discriminant, regulator and class group of k are given by

d

k

= 576081;

R

k

= 7:656;

Cl

k

�

=

C

3

� C

3

� C

4

=: G

1

�G

2

�G

3

:

In order to compute the Hilbert class �eld �(k)of k, according to our reduction we

have to compute the class �elds of k belonging to

~

G

1

= G

2

�G

3

,

~

G

2

= G

1

�G

3

and

~

G

3

= G

1

�G

2

. The class �elds belonging to

~

G

1

and

~

G

2

are of prime degree over k

and therefore primitive over k. The class �eld � belonging to

~

G

3

has Galois group

isomorphic to C

4

and therefore a unique quadratic sub�eld �

0

. To compute � we

will have to compute this class �eld �rst. If G

4

is the subgroup of order 2 of G

3

, the

class �eld �

0

belongs to the subgroup G

1

�G

2

�G

4

of Cl

k

. Once �

0

is found, � will

be computed as a class �eld to �

0

in a second step.
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Figure 2.5.
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We note that k is Galois of type V

4

. This property is not used by our class group

algorithm, but it can be used to obtain the class �eld in a di�erent way. The three

sub�elds of k are k

1

:= Q(

p

�23) ; k

2

:= Q(

p

�759) ; k

3

:= Q(

p

33). In our case

the Hilbert class �eld �(k) can already be obtained from k

1

and k

2

. This will be done

in Section 5.

3. Class fields of prime degree

Let p be a prime number dividing the class number h

k

of k. In this section we

develop a method for computing all sub�elds � of the Hilbert class �eld �(k) of k

with [� : k] = p. Each of these �elds is the class �eld belonging to a subgroup G

of Cl

k

satisfying

jCl

k

=Gj = p:(3.1)

We denote the set of all these �elds by �

p

. Since we want to apply Kummer theory

we need a base �eld which contains all p-th roots of unity. In case p > 2 this

requires a detour via the extension F = k(�

p

), where �

p

denotes a primitive p-th

root of unity. From the class �elds of F belonging to subgroups of index p in CL

F

we obtain the corresponding class �elds of k with Theorem 2.2.
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Figure 3.1.
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For obvious reasons the cases p = 2 and p > 2 are treated separately in the sequel.

3.1. Case p > 2.

Let F = k(�

p

). In case �

p

is not contained in k we can apply Theorem 2.2 to the

cyclic extension F=k.

Lemma 3.2. The class �eld E of F belonging to N

�1

F=k

(H) is a Kummer extension

of degree p, e.g. there is an � 2 K with

E = F(

p

p

�) :

This is a consequence of the properties of Kummer extensions and the degree of F

over k being p� 1.

At this stage we have reduced the problem of the construction of �

H

to the con-

struction of a Kummer extension E and to the computation of a certain sub�eld

of E . We will deal with the problem of the computation of the sub�eld in a later

section and concentrate now on the construction of E .

The class �eld of F belonging to N

�1

F=k

(H) is a sub�eld of the Hilbert class �eld

of F and therefore unrami�ed at all places. Since F is a totally imaginary �eld,

rami�cation can only occur at �nite places and hence it is neccessary and su�cient

for a �nite abelian extension E having a relative discriminant equal to o

F

to be a

sub�eld of the Hilbert class �eld of F . This is important for our construction, since

there is an algorithm given in [Da] to compute the relative discriminant d

E=F

of

E=F for a Kummer extension of prime degree. Since we did not use any speci�c

information on H other than jCl

k

=Hj = p, the idea outlined above applies to all

sub�elds of the Hilbert class �eld of k with degree p over k, which were denoted by

�

p

.

Therefore the problem of computing �

p

is reduced to the following three subprob-

lems:

(1) the computation of all unrami�ed abelian extensions E of F with [E : F ] = p,
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(2) the computation of all sub�elds K of each E such that k � K, K=k is abelian

and [K : k] = p holds,

(3) the validation of K, e.g. proving that K is a sub�eld of the Hilbert class

�eld of k.

To compute all unrami�ed abelian extensions E of F , we note the following theorem,

which can be found in [He] (note that this theorem is true for all primes):

Theorem 3.3. Let E be an algebraic number �eld with

E = F(

p

p

�)

for a � 2 o

F

. Then for p 2 P

F

po

E

= P

p

, if gcd(�

p

(�) ; p) = 1. In the case

gcd(�

p

(�) ; p) = p we have:

(i) For p - p we have po

E

= P

1

� : : : �P

p

if the congruence x

p

� � mod p has a

solution and po

E

= P if there is no solution to the congruence.

(ii) If pjp holds, we have with e

0

:= �

p

(p) =(p� 1):

(a) po

E

= P

1

� : : : �P

p

if the congruence x

p

� � mod p

e

0

p+1

has a solution,

(b) po

E

= P if the congruence x

p

� � mod p

m

is solvable for m = e

0

p,

but not for m = e

0

p+ 1.

(c) po

E

= P

p

if the congruence x

p

� � mod p

e

0

p

has no solution.

This theorem shows that the principal ideal a = �o

F

must be the p{th power of

an ideal in o

F

if � generates an unrami�ed Kummer extension of degree p over F .

Hence, if E = F(

p

p

�) 6= F is unrami�ed over F for some � 2 o

F

, we have �o

F

= a

p

for some ideal a � o

F

and for the class A of a in Cl

F

we conclude ord

Cl

F

(A) 2 f1; pg.

Since ord

Cl

F

(A) = 1 would yield [E : F ] = 1, we have ord

Cl

F

(A) = p. We have just

shown the next proposition.

Proposition 3.4. Let fa

1

; : : : ; a

m

g be a (minimal) set of ideals satisfying

fa

1

P

F

; : : : ; a

m

P

F

g = fA 2 Cl

F

j ord

Cl

F

(A) = pg;

and let �

1

; : : : ; �

m

2 o

F

be �xed with �

i

o

F

= a

p

i

(1 � i � r). Finally, let f�

1

; : : : ; �

s

g

be a set of representatives of the factor group U

F

=U

p

F

of the unit group of F .

If E is an unrami�ed Kummer extension of degree p over F , we have E = F(

p

p

�

i

�

j

)

for some i 2 f1; : : : ; sg and j 2 f1; : : : ; rg.

As an application of this proposition we are now able to compute all unrami�ed

abelian extensions of F of degree p. To do so, let fG

1

; : : : ; G

m

g be the set of all

subgroups of the class group such that G

i

is a cyclic group of order p and let a

i

be

a representative of a generator of G

i

(1 � i � m). Finally, let �

i

be a generator of

the principal ideal a

p

i

(1 � i � m) and let

U

(p)

F

=< �

0

> � < �

1

> � : : :� < �

r

>
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be a subgroup of �nite index I in U

F

such that p - I, where �

0

is a torsion unit

of F and �

1

; : : : ; �

r

are independent units of F . In the following we will call such

a subgroup of U

F

a p{maximal unit group. These ideals and algebraic numbers

can be computed by methods outlined in [Po, PoZa, Co]. The set of all unrami�ed

abelian extensions of F of degree p is now a subset of


 :=

�

F

�

p

q

�

n

0

0

� : : : � �

n

r

r

� �

n

r+1

i

�

j 1 � i � m; 0 � n

j

< p; 0 � j � r + 1

�

and can be computed by checking each extension E 2 
 by computing the relative

discriminant of E=F . This can be done by an algorithm given in [Da]. Note, that

two generators

p

q

�

n

0

0

� : : : � �

n

r

r

� �

n

r+1

i

and

p

q

�

m

0

0

� : : : � �

m

r

r

� �

m

r+1

i

can generate the

same extension. Therefore the size of 
 is given by m

p

r+2

�1

p�1

, since the number of

cyclic subgroups of order p of F

r+2

p

is

p

r+2

�1

p�1

.

Once we have computed all unrami�ed extensions fE

1

; : : : ; E

n

g of F such that E

i

=F

is abelian of degree p, we have to �nd a way to compute the class �elds of k belonging

to subgroups of the class group satisfying (3.1), which are the �elds we are looking

for, from the �elds fE

1

; : : : ; E

n

g. By Theorem 2.2, Lemma ?? and the fact that

the class �eld of F belonging to N

�1

F=k

(H) is a sub�eld of the Hilbert class �eld of

F , we conclude by Galois theory that � 2 �

p

is a sub�eld of at least one �eld in

fE

1

; : : : ; E

n

g. A necessary condition for E

i

to have one � 2 �

p

as a sub�eld was

given in Theorem 2.2, namely the extension E

i

=k has to be abelian. So before we

check if one � 2 �

p

is contained in E

i

for some i, we �rst check if the extension E

i

=k

is abelian. A necessary and su�cient condition for this fact is given in Shafarevich

[Sha], though the result was certainly already known to Hilbert.

Lemma 3.5. Let E = F(

p

p

�) be a Kummer extension of F and let � be a generating

automorphism of the Galois group Gal (F=k) such that �(�

p

) = �

�

p

. The extension

E=k is abelian if and only if there is a �

0

2 F satisfying

�(�) = �

p

0

� �

�

:

This lemma enables us to test whether a given Kummer extension E = F(

p

p

�) over

F is abelian over k or not by simply checking if �(�)=�

�

is a p-th power in F . This

can be done by either �nding a linear factor of t

p

� �(�)=�

�

in F [t] or by applying

Montgomery's algorithm [Mo]. Moreover, we can easily compute the unique sub�eld

~

� of E with [

~

� : k] = p, since this �eld is the �xed �eld of the k{automorphism � of

E de�ned by

�(

p

p

�) = �

0

p

p

�

�

; �(�

p

) = �

�

p

and can therefore be computed by linear algebra. So, without loss of generality,

let fE

1

; : : : ; E

m

g (m � n) be the set of all E

i

such that E

i

=k is abelian (and hence

cyclic) and let �

i

be the (unique) sub�eld of E

i

with [�

i

: k] = p (1 � i � m). We

de�ne

f

�

p

be the set of all these �elds �

i

.
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It now remains to check for all � 2

f

�

p

whether or not � 2 �

p

holds. We certainly

know that each � 2

f

�

p

is abelian over k, so it just remains to prove that � is

unrami�ed at all places over k. If the number of �elds in

f

�

p

equals the number

of class �elds of degree p (which certainly is known), we do not need to prove

the correctness of the result. Otherwise we proceed as follows. Let � 2

f

�

p

be a

candidate for a class �eld belonging to �

p

. By construction, � is given by a k{basis

as a sub�eld of E

i

. Since this extension is primitive, there is a basis element of �

such that the minimal polynomial of that element over k has degree p. Therefore it

is easy to compute a primitive element of � over k [Tra, PoZa], hence over Q , and

we are able to compute the signature of � [PoSchDi], and therefore the rami�cation

of the in�nite primes. To verify that � is unrami�ed over k at all �nite primes,

we compute the absolute discriminant d

�

of �. There is no rami�cation of �=k at

�nite primes if and only if jd

p

k

j = jd

�

j. As already mentioned, we need to know

the discriminant of the potential class �eld � to prove that this �eld is one of the

�elds we are looking for. The �eld � can be given as an extension of k as well as a

k-vector space in a Kummer extension E of degree p over F . We will use the second

representation to compute d

�

.

By an algorithm given in [Da], an integral basis of o

E

can easily be computed. So

we can assume, that we know an integral basis �

1

; : : : ; �

[E:Q]

of o

E

. Since we know a

k{basis of � in E , we can compute a Q basis �

1

; : : : ; �

[�:Q]

of � in E . Then it is easy

to compute an integral basis of O

�

since we have O

�

= � \ o

E

. This can be done

by simple linear algebra. So let �

1

; : : : ; �

[�:Q]

2 E be an integral basis of �. Then we

have

d

�

= ([E : �]

[�:Q]

)

�1

det(Tr

E=Q

(�

i

�

j

)):

3.2. Case p = 2.

The case p = 2 can be treated quite similarly to the last one. We can leave out

some of our arguments.

As in the previous section, we consider all Kummer extensions of k(�

2

) = k un-

rami�ed at all �nite places. These extensions are not necessarily unrami�ed at the

in�nite places as the example Q(

p

�2;

p

6)=Q(

p

6) shows. By the method described

for the case p > 2 we can compute all extensions E of k of degree 2 such that E=k is

unrami�ed at all �nite places, e.g. has discriminant O

k

. One of these extensions has

to have the appropriate rami�cation at the ini�nite places, e.g the correct signature

by Proposition 3.4. By computing a primitive element of each such �eld E over Q

this can be checked easily.

4. Reduction of 


The stated algorithm has one major problem. This is the number of Kummer

extensions that have to be considered during the computation. The set 
 tends

to be very large for primes greater than 2, and we cannot give the precise size (or
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at least an upper bound) of 
 in terms of k, since this would require a precise

knowledge of the p{rank of Cl

F

, where F is again k(�

p

) and the p{rank of Cl

F

,

denoted by rank

p

(Cl

F

), is the number of cyclic factors with order being a power of

p in the complete decomposition of Cl

F

in cyclic groups of prime power order. The

only known results are related to Iwasawa theory and we have, for example, the

following lower bound for rank

p

(Cl

F

) if k is totally real and p is odd [Wa, La90].

Theorem 4.1. Let C

+

be the p{Sylow subgroup of the class group of k and C

�

be

the kernel of the norm map N

F=k

(�) from the p{Sylow subgroup of Cl

F

onto Cl

k

.

Then we have rank

p

(C

+

) � rank

p

(C

�

) + 1 and therefore

rank

p

(Cl

F

) � 2rank

p

(C

+

)� 1;

since we have C = C

+

� C

�

for the p{Sylow subgroup of Cl

F

. If the extension

F(�

1=p

F

), where �

F

is the group of roots of unity in F , is rami�ed over F , we have

rank

p

(C

+

) � rank

p

(C

�

), which implies

rank

p

(C) � 2rank

p

(C

+

):

Let r be the unit rank of F and r

p

the p{rank of Cl

F

. Then the set 
 consists of

p

r

p

�1

p�1

p

r+2

Kummer extensions. For each of these extensions we would have to test

whether or not the extension is rami�ed at a �nite place by computing the relative

discriminant.

Example 4.2. To compute the (unique) sub�eld �

3

with [�

3

: k] = 9 of the Hilbert

class �eld of the �eld k given in Example 2.4, we would have to consider

3

2

�1

3�1

3

5

�1

3�1

=

484 Kummer extensions to compute all unrami�ed extensions of k(�

3

) since we have

Cl

k(�

3

)

�

=

C

2

� C

3

� C

3

. This would be still in a practical range, but to compute

the Hilbert class �eld of Q(�), with �

3

� 36�+ 1 = 0, which has class number 5, we

would already have to consider

5

2

� 1

5� 1

5

7

� 1

5� 1

= 117186

extensions since the class group of Q(�; �

5

) is isomorphic to C

5

� C

170

.

This example shows that it is crucial for the algorithm to reduce the size of 
. We

will give a sieving method to reduce the size of 
 during the computations. So we

want to remove extensions from 
 by analyzing the results of already computed

extensions.

Let G be a subgroup of Cl

F

of order p generated by aP

F

and let � be a generator

of the principal ideal a

p

. Without loss of generality we assume,

p 62 a:(4.1)
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Furthermore let U

(p)

F

=< �

0

> � < �

1

> � : : :� < �

r

> be a p{maximal unit group

of U

F

. Then a subset of 
 is given by




G

=

�

F

�

p

q

�

n

0

0

� : : : � �

n

r

r

� �

n

r+1

�

j 0 � n

j

< p; 0 � j � r + 1

�

:

As already mentioned, the set 


G

contains

p

r+2

�1

p�1

extensions.

Our aim is to reduce the size of this set 


G

successively. By Theorem 3.3 we can

conclude that for a given E 2 


G

a prime ideal p 2 P

F

can only be rami�ed in

E=F if p j p. As a consequence, to �nd the unrami�ed extensions in 


G

we only

have to concentrate on rami�cation of prime ideals above p. Let p

1

; : : : ; p

n

be the

prime ideals above p in F . The following proposition is an immediate consequence

of Theorem 3.3.

Proposition 4.3. Let E

i

= F(

p

p

�

i

) (i = 1; 2) be two extensions in 


G

with relative

discriminants d

1

and d

2

over F and E = F(

p

p

�

1

�

2

) 6= F . Then we have for

1 � i � n

�

p

i

(d

1

) 6= �

p

i

(d

2

) =) �

p

i

�

d

E=F

�

> 0:

Thus if �

p

i

0

(d

1

) 6= �

p

i

0

(d

2

) holds for some i

0

, then E=F is rami�ed.

Another sieving, which is a little bit more complicated, will be discussed in the

sequel. It deals with the case that for two given extensions E

1

; E

2

2 


G

with relative

discriminants d

1

and d

2

, we have �

p

i

(d

1

) = �

p

i

(d

2

) for some i 2 f1; : : : ; ng. We

make use of the following preparatory lemma [Da].

Lemma 4.4. Let E = F(

p

p

�) 2 


G

be a Kummer extension of F rami�ed at p

i

0

,

e.g. �

p

i

0

�

d

E=F

�

> 0 for some i

0

2 f1; : : : ; ng. With e

0

:= �

p

i

0

(p)

1

p�1

and

� = maxf0 � k < e

0

p j 9
 2 o

F

: 


p

� � mod p

k

i

0

g;

we have gcd(�; p) = 1 and

�

p

�

0

�

d

E=F

�

= (p� 1)(e

0

p� �+ 1):

Proposition 4.5. Let p be a prime ideal contained in fp

1

; : : : ; p

n

g and de�ne e

0

:=

�

p

(p)

1

p�1

. For x; y 2 o

F

n p, � := d

n

p

e and n < e

0

p we have

x

p

� y

p

mod p

n

() x � y mod p

�

:

Proof. "(=": By assumption we have x � y mod p

�

. Hence there is an � 2 p

�

satisfying x = y + � and therefore we have

x

p

� (y + �)

p

� y

p

+

p�1

X

i=1

 

p

i

!

y

p�i

�

i

+ �

p

mod p

n

:
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From �

p

(y) = 0 and �

p

(�) 6= 0 we conclude

�

p

  

p

i

!

y

p�i

�

i

!

6= �

p

  

p

j

!

y

p�j

�

j

!

for 1 � i < j � p� 1. Since we have n < e

0

p, it follows d

n

p

e � n� e

0

(p� 1) and we

get

�

p

 

p�1

X

i=1

 

p

i

!

y

p�i

�

i

!

= �

p

(p) + �

p

(�) � e

0

(p� 1) + n� e

0

(p� 1) = n:

Moreover, we have �

p

(�

p

) = p�

p

(�) � pd

n

p

e � n and the assertion is proved .

"=)": Assume x = y + � with � 62 p

�

. Then we have �

p

(�) � � � 1, �

p

(�) < e

0

and

p�

p

(�) � p(�� 1) < p

�

n

p

+ 1

�

� p = n+ p� p = n;

where the second inequality follows from

�

p

(�) � e

0

) � > e

0

) n > e

0

p;

which is a contradiction to n < e

0

p. Now let r be

P

p�1

i=1

�

p

i

�

y

p�i

�

i

.

If n is less than �

p

(p), we have �

p

(r) � �

p

(p) > n and therefore

x

p

� (y + �)

p

� y

p

+ �

p

6� y

p

mod p

n

:

In the case n � �

p

(p), we have �

p

(r) = (p� 1)e

0

+ �

p

(�) > p�

p

(�) and hence

�

p

(r + �

p

) = minf(p� 1)e

0

+ �

p

(�) ; p�

p

(�)g = p�

p

(�) < n:

So we proved x

p

6� y

p

mod p

n

, which is a contradiction to our assumption. Hence,

we have x � y mod p

�

.

Proposition 4.6. Let E

i

= F(

p

p

�

i

) (i = 1; 2) be two extensions in 


G

with relative

discriminants d

1

; d

2

over F such that there is an i

0

satisfying �

p

i

0

(d

1

) = �

p

i

0

(d

2

) > 0

and let E = F(

p

p

�

1

�

2

) 6= F . De�ning e

0

= �

p

i

0

(p)

1

p�1

and

n

i

= maxf0 � k � e

0

p+ 1 j 9 
 2 o

F

: 


p

� �

i

mod p

k

i

0

g < e

0

p (i = 1; 2);

we have n

1

= n

2

=: n. Let 


1

; 


2

; ~�

1

; ~�

2

in o

F

be given with 


p

i

� �

i

mod p

n

i

0

and




p

i

+ ~�

i

� �

i

mod p

n+1

i

0

. Then we have

�

p

i

0

�

d

E=F

�

< �

p

i

0

(d

1

)

if and only if (


p

1

~�

2

+ 


p

2

~�

1

) � 0 mod p

n+1

i

0

.
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Proof. "(=": Obvious.

"=)": By Theorem 4.4 there must be a � 2 o

F

such that �

p

� �

1

�

2

mod p

n+1

holds. Hence, we have �

p

� (


1




2

)

p

mod p

n

and

�

p

� (


1




2

)

p

+ ~�

1




p

2

+ ~�

2




p

1

+ ~�

1

~�

2

� (


1




2

)

p

+ ~�

1




p

2

+ ~�

2




p

1

mod p

n+1

:(4.2)

By the last proposition we conclude � � 


1




2

mod p

d

n

p

e

and therefore there is an

~

� 2 p

d

n

p

e

such that � = 


1




2

+

~

� holds. So with r :=

P

p�1

i=1

�

p

i

�

(


1




2

)

p�i

~

�

i

we have the

congruence

�

p

� (


1




2

)

p

+ r +

~

�

p

mod p

n+1

:(4.3)

We will now prove r �

~

�

p

� 0 mod p

n+1

, with which we begin by showing r � 0

mod p

n+1

. By Lemma 4.4 we have gcd(n; p) = 1 and hence

�

n

p

�

=

�

n+ 1

p

�

:(4.4)

We have x � e

0

(p� 1) +

x

p

, x � e

0

p for all x 2 R and since n+ 1 � e

0

p holds,

e

0

(p� 1) +

n+1

p

� n+ 1

=) e

0

(p� 1) + d

n+1

p

e � n+ 1

=) e

0

(p� 1) + d

n

p

e � n+ 1:

follows from (4.4). So r � 0 mod p

n+1

is now a consequence of �

p

(r) = e

0

(p� 1) +

�

p

�

~

�

�

� e

0

(p� 1) + d

n

p

e � n+ 1. It remains to prove that

~

�

p

� 0 mod p

n+1

holds,

too.

By the de�nition of

~

� we have

~

�

p

� 0 mod p

n

and by (4.4) we have

p

�

n

p

�

= p

�

n+ 1

p

�

� p

n+ 1

p

= n+ 1;

and therefore �

p

�

~

�

p

�

� n + 1, so that

~

�

p

� 0 mod p

n+1

holds. The assumption

follows now from (4.2) and (4.3).

5. Examples

We illustrate this discussion of the construction of Hilbert class �elds with several

examples.

Clearly, we start with Hasse's examples from [Ha]. The class �eld of k = Q(

p

�31)

of class number 3 is given by a root of the relative polynomial

x

3

+

3 +

p

�31

2

x

2

+

�3 +

p

�31

2

x� 1 :
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From a theoretical point of view the generation of �(k) over Q by

p

�31 and a root

� of the polynomial x

3

+x+1 (of discriminant -31) is certainly preferable. However,

we chose to list a relative polynomial since a root of it generates an order of �(k)

of smaller index than Z[

p

�31 ; �].

The class �eld of k = Q(

p

�47) of class number 5 is generated by a root of the

relative polynomial

x

5

+

9�

p

�47

2

x

4

+

5� 2

p

�47

2

x

3

�

5 + 3

p

�47

2

x

2

�

25 + 3

p

�47

2

x� 5 :

As in the previous example we can generate �(k) over Q by

p

�47 and a root � of

the polynomial x

5

+ 3x

2

+ 2x� 1.

Both examples are computed on a medium fast work station in less than a minute.

The next example was already considered by Stark [Sta]. Stark computed the

Hilbert class �eld of the totally real cubic �eld of smallest discriminant with class

number 3 by using transcendental functions. The cubic �eld is generated by a root

� of the polynomial t

3

� t

2

� 9t+ 8. The invariants of k are:

(1) k is totally real,

(2) the discriminant, regulator and class group of k are given by

d

k

= 2597; R

k

= 4:795; Cl

k

�

=

C

3

and an integral basis of k is given by

O

k

= Z+ �Z+ �

2

Z:

A generating polynomial of �(k) over k is

t

3

� (223 � 549� + 336�

2

)t� 6229 + 12156� � 5766�

2

;

and a generating polynomial over Q is

t

9

� 4t

8

� 3t

7

+ 29t

6

� 26t

5

� 24t

4

+ 34t

3

� 2t

2

� 5t+ 1:

It took 13 seconds to compute this data for �(k) on a HP 735 with 196 MB RAM.

We note that the class number of �(k) is one.

The second but last example is the �eld k = Q(�) with �

4

�5�

2

+196. The invariants

of k were already given in Example 2.4. Figure 5.1 shows the relevant sub�eld lattice

that occurs during the computations. The class group of F = k(�

3

) is isomorphic

to C

3

� C

3

� C

2

.

The result is �(k) = k(� ; �) with
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� � a root of

x

9

+ (�9 + 6!

4

)x

8

� (119 + 12!

2

+ 19!

4

)x

7

+(902 + 82!

2

� 58!

3

� 380!

4

)x

6

+(3013 + 798!

2

+ 213!

3

+ 581!

4

)x

5

�(19168 + 3580!

2

� 1453!

3

� 7746!

4

)x

4

�(1702 + 2174!

2

+ 5785!

3

+ 12224!

4

)x

3

+(74948 + 31710!

2

+ 5013!

3

� 21554!

4

)x

2

�(126690 + 47540!

2

� 10700!

3

� 51805!

4

)x

+(48475 + 9550!

2

� 10150!

3

� 19600!

4

);

� � a root of

x

4

+ (714 + 192!

2

� 192!

4

)x

2

�

(72 � 144!

4

)x+ (909 � 704!

2

+ 704!

4

):

Figure 5.1.

k

144

Q

�(k)

C

4

C

2

C

3

� C

3

E

F = k(�

3

)

The computation of �(k) took 2 minutes on a HP 735 with 196 MB RAM. A

generating polynomial of �(k) over Q is omitted since the output would require

several pages.

An alternative approach via the imaginary sub�elds of k yields �(k) as follows. The

�eld k

1

= Q(

p

�23) has class number 3. Its Hilbert class �eld �(k

1

) is therefore

generated over Q by

p

�23 and a root �

1

of the polynomial x

3

�x+1 (of discriminant

-23). The �eld k

2

= Q(

p

�759) has class group C

2

�C

12

. Its Hilbert class �eld �(k

2

)

can easily be computed by analytic methods. Then a computation of the sub�elds
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of �(k

2

) yields the following generators over Q :

p

33 ; a root �

2

of x

3

� x

2

+ 6x� 3 (of discriminant -759) ;

and a root �

3

of x

4

+ 2x

3

+ 2x

2

+ x� 17 :

Hence, we also �nd �(k)

�

=

k(�

1

; �

2

; �

3

). Those computations as well as the

construction of an isomorphism are easily performed with KASH [Kant]. (A gen-

eration of �(k) over Q can also be found from k(� ; �) by a computation of the

corresponding lattice of sub�elds.)

The �nal example is chosen in a way that all other presently known methods would

fail.

We compute the class �eld of k = Q(�) for a root � of x

3

+ 28x + 175. Clearly, k

has one real and two complex conjugates. The discriminant of k is -914683 (k has

a power integral basis), the regulator of k is 4.328, and the class group of k has

the structure C

6

� C

12

. Hence, the class �eld �(k) of k is of total degree 216 over

Q . We compute �(k) = Q(�

1

; �

2

; �

3

; �

4

), where the �

i

are zeros of the following

polynomials f

i

(x) (1 � i � 4):

f

1

(x) := x

3

+ x

2

� 2x� 1 (�

1

= 2 cos(2�=7)) ;

f

2

(x) := x

3

+ �x

2

� 6x+ 27 ;

f

3

(x) := x

2

� �x� (�+ 2) ;

f

4

(x) := x

4

� �x

3

� 22x

2

� (�

2

� 19�+ 38)x� (3�

2

� 16�+ 53) :

We note that f

2

(x) ; f

3

(x) ; f

4

(x) cannot be substituted by polynomials in Q [x].

The total computation time was a little less than 5 minutes in this case.

The whole algorithm for the computation of Hilbert class �elds is implemented in

KASH [Kant], which is public domain and can be obtained from

ftp.math.tu-berlin.de:/pub/algebra/Kant/Kash.
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