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A Fast Algorithm for

Polynomial Fatorization over Q

Q

Q

p

par David Ford

�

, Sebastian Pauli

y

et Xavier-Fran�ois Roblot

�

Abstrat. We present an algorithm that returns a proper fator of a poly-

nomial �(x) over the p-adi integers Z

p

(if �(x) is reduible over Q

p

) or

returns a power basis of the ring of integers of Q

p

[x℄=�(x)Q

p

[x℄ (if �(x) is ir-

reduible over Q

p

). Our algorithm is based on the Round Four maximal order

algorithm. Experimental results show that the new algorithm is onsiderably

faster than the Round Four algorithm.

1. Introdution.

We onsider the problem of fatoring polynomials with p-adi oeÆients.

Restriting our attention to moni, square-free polynomials in Z

p

[x℄, we

present a method to ompute the omplete fatorization of suh polyno-

mials into irreduible fators in Z

p

[x℄. Our algorithm has its origins in

the Round Four algorithm of Zassenhaus, but with substantial modi�a-

tions. The new algorithm is muh faster than the \lassial" Round Four

algorithm, and also more straightforward.

In Setion 2 we establish some notation. In Setion 3 we establish a

riterion for a polynomial to be reduible over Q

p

.

If �(x) is a moni, square-free polynomial in Z

p

[x℄, then

�(x) is reduible over Q

p

if and only if there exists a poly-

nomial �(x) in Q

p

[x℄ suh that the polynomial resultant

Res

x

�

�(x); t � �(x)

�

of �(x) and t � �(x) belongs to Z

p

[t℄

and has more than one distint irreduible fator modulo p.

We further show how to onstrut a proper fatorization of �(x) if suh a

polynomial �(x) is known.

In Setion 4 we de�ne polynomials of \Eisenstein form" and give a ri-

terion for �(x) to be irreduible over Q

p

.

The polynomial �(x) is irreduible over Q

p

if and only if

there exists a polynomial �(x) in Q

p

[x℄ suh that the resul-

tant Res

x

�

�(x); t � �(x)

�

belongs to Z

p

[t℄ and is of Eisen-

stein form.

We say that suh a polynomial �(x) erti�es (the irreduibility of) �(x).

�
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In Setion 5 we desribe proedures whih, given �(x), yield a proper

fatorization of �(x) if �(x) is reduible, or return a ertifying polynomial

�(x) for �(x), if �(x) is irreduible.

In Setion 6 we show how the results of these proedures an be used to

determine ideal fatorizations and Z

p

-bases for p-maximal orders.

In four Appendies we give details regarding p-adi GCD omputation,

the Hensel lifting threshhold, fatorization of resultant polynomials modulo

p, and experimental results.

2. Notation.

In what follows, � is a moni separable polynomial with oeÆients in

Z

p

, whih we aim to fatorize ompletely over Q

p

. We take �

1

; : : : ; �

n

to

be the roots of � in some �xed algebrai losure of Q

p

, and we denote by

v

p

the p-adi valuation of Q

p

, extended to Q

p

(�

1

; : : : ; �

n

) and normalized so

that v

p

(p) = 1. For '(t) in Z

p

[t℄ we denote by '(t) its image '(t) + pZ

p

[t℄

in Z

p

[t℄=pZ

p

[t℄

�

=

F

p

[t℄.

Let Res

x

�

f(x); g(x)

�

denote the resultant of the polynomials f(x) and

g(x) with respet to the variable x. It is well known that Res

x

�

f(x); g(x)

�

=

0 if and only if f(x) and g(x) have a ommon root. Suppose f(x) =

(x��

1

) � � � (x��

n

). Then Res

x

�

f(x); ��g(x)

�

= 0 if and only if � = g(�

i

)

for some i, and it follows that

Res

x

�

f(x); t� g(x)

�

=

�

t� g(�

1

)

�

� � �

�

t� g(�

n

)

�

:

De�nition 2.1. For �(x) 2 Q

p

[x℄ we de�ne

�

�

(t) =

�

t� �(�

1

)

�

� � �

�

t� �(�

n

)

�

and �

�

=

Y

i<j

�

�(�

i

)� �(�

j

)

�

2

:

We also de�ne

O

�

=

�

�(x) 2 Q

p

[x℄

�

�

�

�

(t) 2 Z

p

[t℄

	

:

For �(x) in O

�

with �

�

6= 0, the redued disriminant of �

�

is p

d

�

, given

by

p

d

�

Z

p

=

�

�

�

(t)Z

p

[t℄ + �

0

�

(t)Z

p

[t℄

�

\ Z

p

:

Remark 2.2. It is lear that �

�

(t) = Res

x

�

�(x); t� �(x)

�

2 Q

p

[t℄.

Remark 2.3. If �

1

(x) � �

2

(x) mod �(x)Z

p

[x℄ then �

�

1

(t) = �

�

2

(t).

Remark 2.4. �(x) belongs to O

�

if and only if �(�

1

); : : : ; �(�

n

) are all

integral over Z

p

.

Remark 2.5. �

�

is not neessarily the harateristi polynomial of a single

�eld element; in general it is the produt of several suh harateristi

polynomials.

Remark 2.6. The redued disriminant p

d

�

an be obtained diretly from

the p-adi Hermite normal form of the Sylvester matrix of �

�

and �

0

�

.
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Remark 2.7. Let �(x) 2 O

�

with �

�

6= 0 and let � be an arbitrary

root of �(x). If O

K

is the ring of integers of the �eld K = Q

p

(�) then

p

d

�

O

K

�Z

p

[�(�)℄�O

K

.

3. Reduibility over Q

Q

Q

p

.

Let �(x) 2 O

�

with �

�

(t) = t

n

+ 

1

t

n�1

+ � � � + 

n

, and de�ne

v

�

p

(�) = min

1�k�n

v

p

(

k

)

k

:

Taking �

i

= �(�

i

) for i = 1; : : : ; n and expressing 

1

; : : : ; 

n

as symmetri

funtions in the �

i

's, it is easily seen (as in [9, Setion 3-1℄) that

v

�

p

(�) = min

�

v

p

(�

1

); : : : ; v

p

(�

n

)

�

:

Beause v

p

(

n

)=n =

�

v

p

(�

1

) + � � � + v

p

(�

n

)

�

=n, it follows that v

�

p

(�) =

v

p

(

n

)=n if and only if v

p

(�

1

) = � � � = v

p

(�

n

).

But suppose v

�

p

(�) = A=B < v

p

(

n

)=n. Taking '(x) = �(x)

B

=p

A

and

'

i

= '(�

i

) for i = 1; : : : ; n, we have

min

�

v

p

('

1

); : : : ; v

p

('

n

)

�

= 0 < max

�

v

p

('

1

); : : : ; v

p

('

n

)

�

and onsequently �

'

(t) will have at least two distint irreduible fators

modulo p.

Proposition 3.1. If there exists �(x) in O

�

suh that �

�

(t) has at least

two distint non-trivial irreduible fators modulo p then �(x) is reduible

in Z

p

[x℄.

Proof. Assume �(x) belongs to O

�

with �

�

(t) having at least two distint

non-trivial irreduible fators modulo p.

Hensel lifting gives relatively prime moni polynomials '

1

(t) and '

2

(t)

in Z

p

[t℄ with 0 < deg'

1

< deg�

�

, 0 < deg'

2

< deg�

�

, suh that

�

�

(t) = '

1

(t)'

2

(t):

Reordering the roots of � if neessary, we may write

'

1

(t) =

�

t� �(�

1

)

�

� � �

�

t� �(�

r

)

�

; '

2

(t) =

�

t� �(�

r+1

)

�

� � �

�

t� �(�

n

)

�

with 1 � r � n� 1, and it follows that

�(x) = gd

�

�(x); '

1

�

�(x)

�

�

� gd

�

�(x); '

2

�

�(x)

�

�

is a proper fatorization of �(x). �

Remark 3.2. See Appendix A for details of the omputation of the p-adi

GCD.
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Example 3.3. Let

p = 5; �(x) = x

4

+ 25x

2

+ 50x+ 25; �(x) =

1

5

x

2

and observe that

p

�1 2 Z

5

. Then

�

�

(t) = t

4

+ 10t

3

+ 27t

2

� 10t+ 1 � (t+ 2)

2

(t� 2)

2

mod 5

and �

�

(t) has two distint irreduible fators in F

5

[t℄. The Hensel onstru-

tion leads to

'

1

(t) = t

2

+ (5� 2

p

�1)t� 1

'

2

(t) = t

2

+ (5 + 2

p

�1)t� 1

'

1

�

�(x)

�

=

1

25

�

x

4

+ (25� 10

p

�1)x

2

� 25

�

'

2

�

�(x)

�

=

1

25

�

x

4

+ (25 + 10

p

�1)x

2

� 25

�

gd

�

�(x); '

1

�

�(x)

�

�

= x

2

� 5

p

�1x� 5

p

�1

gd

�

�(x); '

2

�

�(x)

�

�

= x

2

+ 5

p

�1x+ 5

p

�1

and we have a proper fatorization of �(x).

De�nition 3.4. Let �(x) 2 O

�

with �

�

(t) = t

n

+ 

1

t

n�1

+ � � �+ 

n

.

(i) We say � passes the Hensel test if �

�

(t) = �

�

(t)

e

for some e � 1 and

some irreduible moni polynomial �

�

(t) in F

p

[t℄.

(ii) We say � passes the Newton test if

v

p

(

n

)

n

�

v

p

(

k

)

k

for k = 1; : : : ; n� 1:

Remark 3.5. If � passes the Hensel test and �

�

(t) 6= t then � passes the

Newton test.

Remark 3.6. If � passes the Newton test then

v

p

�

�(�

1

)

�

= � � � = v

p

�

�(�

n

)

�

= v

�

p

(�):

Proposition 3.7. If any member of O

�

fails either the Hensel test or the

Newton test then �(x) is reduible in Z

p

[x℄.

Proof. This follows from Proposition 3.1. �

4. Irreduibility over Q

Q

Q

p

.

De�nition 4.1. A moni polynomial �(t) in Z

p

[t℄ is of Eisenstein form if

there exists a moni polynomial �(t) in Z

p

[t℄, irreduible modulo p, suh

that

�(t) = �(t)

k

+ p

�

q(t)�(t) + r(t)

�

with q(t) in Z

p

[t℄, r(t) in Z

p

[t℄ n pZ

p

[t℄, deg r < deg �, and k > 0.

Remark 4.2. If �(t) is irreduible modulo p then �(t) is of Eisenstein

form. (Take �(t) = �(t)� p, for example.)
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Remark 4.3. An Eisenstein polynomial is a polynomial of Eisenstein form

with �(t) = t.

Proposition 4.4. If �(t) is of Eisenstein form then �(t) is irreduible in

Z

p

[t℄.

Proof. If there is a fatorization �(t) =

�

�(t)

k

1

+ p'

1

(t)

��

�(t)

k

2

+ p'

2

(t)

�

,

with k

1

> 0, k

2

> 0, and with � and � satisfying the onditions of the

de�nition, then the requirement r(t) =2 pZ

p

[t℄ annot be met. �

Proposition 4.5. Let K be a �nite extension of Q

p

with O

K

its ring of

integers and P its prime ideal. Let �(x) be a moni polynomial in Z

p

[x℄

with �(x) irreduible modulo p and let � be an element of O

K

suh that

�(�) 2 P. Then the minimal polynomial of � over Q

p

is of Eisenstein

form if and only if �

�

�

�

is a prime element of O

K

and O

K

=P = F

p

[�℄.

Proof. If the minimal polynomial of � is of Eisenstein form then it is on-

gruent modulo p to a power of �, and it follows diretly that �

�

�

�

is prime

and O

K

=P = F

p

[�℄.

To prove the onverse, let � = �(�), v

p

(�) = 1=E, deg � = F , and de�ne

R

x

=

�



0

+ 

1

x+ � � �+ 

F�1

x

F�1

�

�



i

2 Z, d�(p� 1)=2e � 

i

� bp=2 for 0 � i � F � 1

	

:

Then the set R

�

is a omplete set of representatives of O

K

=P and �

E

=p is

a unit in O

K

. Therefore �

E

=p has the �-adi expansion

�

E

=p = �

1;0

+ �

1;1

� + � � � + �

1;E�1

�

E�1

+ p

�

�

2;0

+ �

2;1

� + � � � + �

2;E�1

�

E�1

�

+ p

2

�

�

3;0

+ �

3;1

� + � � � + �

3;E�1

�

E�1

�

+ � � �

with eah �

j;k

belonging to R

�

and v

p

(�

1;0

) = 0. For 1 � j < 1 and

0 � k � E � 1 there exists Æ

j;k

(x) in R

x

suh that �

j;k

= Æ

j;k

�

�

�

. The

polynomial

�(x) = �(x)

E

� p

E�1

X

k=0

�

1

X

j=1

p

j�1

Æ

j;k

(x)

�

�(x)

k

is of Eisenstein form (sine �

1;0

is a unit) and �

�

�

�

= 0. It follows that

�(x) is the minimal polynomial of � over Q

p

. �

De�nition 4.6. Let 	(x) be a moni polynomial belonging to Z

p

[x℄ and

let �(x) 2 Q

p

[x℄. We say �(x) erti�es 	 if Res

x

�

	(x); t � �(x)

�

is of

Eisenstein form.
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Proposition 4.7. If �(x) erti�es � and b�(x) 2 Q

p

[x℄ suh that b�(x) �

�(x) mod p

2

Z

p

[x℄ then b�(x) also erti�es �.

Proof. Let h(t) =

�

�

b�

(t) � �

�

(t)

�

=p

2

. The oeÆients of h(t) are integral

and lie in Q

p

, hene h(t) 2 Z

p

[t℄. It follows that �

b�

(t) is of Eiseinstein

form, if �

�

(t) is. �

De�nition 4.8. For �(x) belonging to O

�

and passing the Hensel and

Newton tests we de�ne �

�

(t) to be an arbitrary moni polynomial in Z

p

[t℄,

with �

�

(t) irreduible in F

p

[t℄, suh that �

�

(t) = �

�

(t)

e

for some e � 1, and

we set

F

�

= deg(�

�

):

If �

�

(�) also passes the Hensel and Newton tests we additionally de�ne

N

�

=E

�

= v

�

p

�

�

�

(�)

�

;

�

�

(t) = �

�

(t)

r

=p

s

with gd(N

�

; E

�

) = 1, rN

�

� sE

�

= 1, and 0 � r � E

�

� 1.

Remark 4.9. v

�

p

(�

�

(�)) = 1=E

�

.

Remark 4.10. If E

�

= 1 then �

�

(�) = p.

Remark 4.11. If � and �

�

(�) both pass the Hensel and Newton tests then

E

�

j n and F

�

j n.

Remark 4.12. If �(x) belongs to O

�

and passes the Hensel and Newton

tests and d

�

= 0 then �

�

(t) = �

�

(t), whih is irreduible in F

p

[t℄, and it

follows that �(x) erti�es �(x).

Proposition 4.13. Let � be irreduible over Q

p

, with � an arbitrary root

of �, and let O

K

be the ring of integers of the �eld K = Q

p

(�). For �(x)

in O

�

the following are equivalent.

(i) �(x) erti�es �.

(ii) �

�

(�) = �

�

(�) and E

�

F

�

= n.

(iii) O

K

= Z

p

[�(�)℄.

Proof. By Proposition 3.1 we have �

�

(t) = �

�

(t)

k

for some k � 1, and hene

we may write �

�

(t) = �

�

(t)

k

+ p

�

q(t)�

�

(t) + r(t)

�

with q(t) 2 Z

p

[t℄, r(t) 2

Z

p

[t℄, and deg r < deg �

�

. Moreover, we have O

K

= f �(�) j �(x) 2 O

�

g

and v

�

p

(�) = v

p

�

�(�)

�

for all �(x) 2 O

�

.

(i) =) (ii). If �

�

(t) is irreduible in F

p

[t℄ then E

�

= 1 and F

�

= n. Oth-

erwise v

�

p

�

r(�)

�

= 0, so that kN

�

=E

�

= v

�

p

�

�

�

(�)

k

�

= 1 + v

�

p

�

q(�)�

�

(�) +

r(�)

�

= 1, hene E

�

=N

�

= k 2 Z, hene N

�

= 1, hene �

�

(�) = �

�

(�) and

n = kF

�

= E

�

F

�

.

(ii) =) (iii). Let �(t) 2 Z

p

[t℄ be a moni polynomial of minimal degree

suh that �

�

�(�)

�

2 pO

K

. Then �(t) � �

�

(t)

e

mod pZ

p

[t℄ for some e � 1

(otherwise deg gd(�; �

�

) < deg �, and the degree of � ould be redued),
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so e=E

�

= v

�

p

�

�

�

(�)

e

�

� 1 and deg � = eF

�

� E

�

F

�

= n. Hene K =

Q

p

�

�(�)

�

, and it is lear that any integral basis for K must be ontained

in Z

p

[�(�)℄.

(iii) =) (i). If �

�

(t) is not irreduible in F

p

[t℄ then k > 1, and we

have r(t) =2 pZ

p

[t℄ beause otherwise �

�

�

�(�)

�

k�1

=p would be a root of

X

2

+ q

�

�(�)

�

X + �

�

�

�(�)

�

k�2

r

�

�(�)

�

=p and so would belong to O

K

but

not to Z

p

[�(�)℄. �

Proposition 4.14. � is irreduible over Q

p

if and only if some �(x) in

Q

p

[x℄ erti�es �.

Proof. By Proposition 4.4, � is irreduible over Q

p

if �(x) erti�es �. For

the onverse, let � be a root of � and let K = Q

p

(�). By [6, Proposition

5.6℄ there exists �(x) 2 Q

p

[x℄ suh that 1; �(�); : : : ; �(�)

n�1

is an integral

basis for K. By Proposition 4.13, �(x) erti�es �. �

5. Fatorization Algorithms

In this setion we desribe Algorithms 5.1 and 5.3, whih together pro-

due a polynomial �(x) 2 Q

p

[x℄ ertifying �(x) or else �nd a proper fa-

torization of �(x).

Algorithm 5.1, below, takes moni polynomials �(x) and �(x) with

� �(x) 2 Z

p

[x℄ squarefree,

� �(x) 2 Z

p

[x℄ irreduible modulo p,

� �(x) � �(x)

e

mod pZ

p

[x℄ for some e > 0,

� �(x) = (x� �

1

) � � � (x� �

n

),

� v

p

(�(�

1

)) = � � � = v

p

(�(�

n

)) = 1=E,

� deg � = F ,

� EF < n,

and returns either

� a proper fatorization of �(x), or

� a polynomial '(x) suh that E

'

F

'

> EF , with E

'

� E and F

'

�

F .

The algorithm attempts to onstrut the �-adi expansion given in the proof

of Proposition 4.5. The algorithm proeeds by omputing the digits �

j;k

as roots of polynomials over the �nite �eld F

p

[�℄. Beause deg � = EF <

deg�, there will at some point be more than one hoie for Æ

j;k

(x), and this

ondition suÆes to fatorize �(x). Also, for eah j, k the algorithm heks

if the threshhold for Hensel lifting has been reahed (see Appendix B), in

whih ase �

j;k

(x) approximates �(x) suÆiently well to give a fatorization

of �(x).

If O

K

=P % F

p

[�℄ then the �-adi expansion does not exist, and the

onstrution will eventually ome to a digit �

j;k

not belonging to R

�

. This
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gives an element  2 O

K

suh that F

p

[�; ℄ % F

p

[�℄, whih leads to the

onstrution of a polynomial '(x) 2 O

�

with F

'

> F and E

'

� E.

If �(�) is not a prime element of O

K

then the �-adi expansion does not

exist, and the onstrution will reah a point where v

p

(�

j;k

(�)) is not a

multiple of 1=E. This leads to the onstrution of a polynomial '(x) 2 O

�

with E

'

> E and F

'

= F .

Algorithm 5.1.

Note: Referenes to �eld elements apply to all embeddings simultaneously;

\�(�) 2 Z

p

[�(�)℄" means \�(�

i

) 2 Z

p

[�(�

i

)℄ for i = 1; : : : ; n", et.

1. Find �(x) 2 Q

p

[x℄ with �(x)�(x) � 1 mod �(x). [ �(�) = 1=�(�). ℄

Set �(x) = �(x)

E

. [ Initially N

�

=E

�

= v

p

(�(�)) = 1. ℄

2. Set j = bv

p

(�(�)), k = (v

p

(�(�)) � j)E. [ k 2 Z, as E

�

j E. ℄

Set (x) = p

�j

�(x)

k

�(x) mod �(x).

[ v

p

((�)) = 0, beause (�) = �(�)=p

j

�(�)

k

. ℄

If  fails the Hensel test then go to step 13.

If F



- F then go to step 12.

3. Find Æ(x) = 

0

+ 

1

x+ � � � + 

F�1

x

F�1

suh that �



(Æ(�)) = 0 and

v

p

((�

j

)� Æ(�

j

)) > 0 for some j.

[ �



(x) splits ompletely over F

p

[�℄, beause F



j F . ℄

If  � Æ fails either the Hensel test or the Newton test then go to

step 13.

4. Replae �(x) �(x)� p

j

�(x)

k

Æ(x).

[ N

�

=E

�

 N

�

=E

�

+N

�Æ

=E

�Æ

. ℄

If E

�

- E then go to step 11.

If �(x) is suÆiently preise then go to step 13.

[ Hensel lifting applies. ℄

Go to step 2.

11. Find a; b;  � 0 suh that (aN

�

� E

�

)E + bE

�

= gd(E;E

�

).

Set '(x) = x+ �(x)

b

�(x)

a

=p



mod �(x).

[ E

'

= lm(E;E

�

) > E, F

'

= F . ℄

Return '(x).

12. Find '(x) 2 Z

p

[x; (x)℄ with F

p

['℄ = F

p

[�; ℄. [ F

'

= lm(F; F



). ℄

If ' fails the Hensel test then go to step 13.

If �

'

(') fails the Newton test then go to step 13.

If E

'

< E, replae '(x) '(x) + �(x). [ E

'

� E, F

'

> F . ℄

Return '(x).

13. Return a proper fatorization of �(x). [ �(x) is reduible. ℄

Remark 5.2. In [7℄ it is shown that Algorithm 5.1 above terminates before

v

p

(�

j;k

(�)) beomes greater than 2v

p

(dis�)=deg(�).
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With �(x) as input, Algorithm 5.3 returns either

� a polynomial �(x) in O

�

ertifying �(x) or

� a proper fatorization of �(x).

Initially �(x) = x; then �(x) is iteratively replaed by '(x) until either

� Algorithm 5.1 gives a proper fatorization of �(x) or

� E

�

F

�

= n.

The ondition E

�

F

�

= n implies that �

�

(x) is of Eisenstein form, so that

�(x) erti�es �.

Algorithm 5.3.

1. Set �(x) = x.

2. While �

�

= 0, replae �(x) �(x) + px.

[ This makes �

�

separable. ℄

If �(x) or �

�

(�(x)) fails either the Hensel test or the Newton test,

go to step 11.

If N

�

> 1 then replae �(x) �(x) + �

�

(�(x)).

[ This gives v

p

(�

�

(�)) = 1=E

�

, with �

�

and E

�

unhanged. ℄

If E

�

F

�

= n then go to step 12.

[ If E

�

F

�

= n then �

�

is of Eisenstein form. ℄

3. Apply Algorithm 5.1 to the pair [�

�

(x); �

�

(x)℄.

If Algorithm 5.1 returns a proper fatorization of �

�

(x) then go to

step 11.

Replae �(x) '(x).

Go to step 2.

11. Return a proper fatorization of �(x). [ �(x) is reduible. ℄

12. Return �(x). [ �(x) is irreduible; �(x) on�rms �(x). ℄

Example 5.4. Let

p = 5; �(x) = x

4

+ 127x

3

+ 43x

2

+ 42x� 259; �(x) = x

2

+ x+ 1:

Then

�(x) = �(x)

2

+ p

�

q(x)�(x) + r(x)

�

with q(x) = 25x� 17, r(x) = �35, so �(x) is not of Eisenstein form. Now

�

�

(t) = t

4

� (2

4

� 5 � 199)t

3

+ (5

4

� 53)t

2

+ (5

3

� 7 � 59)t+ (5

4

� 7

2

)

and so v

p

�

�(�)

�

= 1. Our initial approximation to the minimal polynomial

of � is

�

0;0

(x) = �(x) = x

2

+ x+ 1:

Beause v

p

�

�

0;0

(�)

�

= 1, the element

(�) = �

0;0

(�)=p = (�

2

+ �+ 1)=5
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must be a unit. We have

�



(t) = t

4

� 3184t

3

+ 1325t

2

+ 413t+ 49 � (t

2

+ 3t+ 3)

2

mod pZ

p

[t℄;

�



(t) = t

2

+ 3t+ 3 = (t+ �+ 2)(t� �+ 1):

This gives two hoies for Æ(x), namely Æ(x) = �x� 2 or Æ(x) = x� 1, and

in fat (x) � Æ(x) fails the Hensel test for eah hoie. Note that if we

hoose Æ(x) = �x� 2 and set

 

1

(x) = �

0;0

(x)� pÆ(x) = x

2

+ 6x+ 11;  

2

(x) = x

2

+ 121x � 694;

 

2

(x) being the eulidean quotient of �(x) on division by  

1

(x), then

�(x) �  

1

(x) 

2

(x) mod p

3

Z

p

[x℄;

p � (6x+ 3) 

1

(x) + (19x + 12) 

2

(x) mod p

2

Z

p

[x℄;

whih are suÆient onditions to apply Hensel lifting.

Example 5.5. Let

p = 2; �(x) = x

6

+ 16x

5

+ 8x

4

� 20:

Initially �(x) = x, so that

�

�

(t) = �

�

(t) = t; F

�

= 1; E

�

= 3:

For j = 1, k = 0:

�

1;0

(x) = �

�

(x)

E

�

= x

3

;

v

p

�

�

1;0

(�)

�

= 1; (x) = �

1;0

(x)=p = x

3

=2;

�



(t) � (t+ 1)

6

mod 2Z

p

[t℄; �



(t) = t+ 1; Æ

1;0

(x) = 1;

v

p

�

(�) � Æ

1;0

(�)

�

= 1:

For j = 2, k = 0:

�

2;0

(x) = �

1;0

(x)� pÆ

1;0

(x) = x

3

� 2;

v

p

�

�

2;0

(�)

�

= 2; (x) = �

2;0

(x)=p

2

= (x

3

� 2)=4;

�



(t) � (t

2

+ t+ 1)

3

mod 2Z

p

[t℄; �



(t) = t

2

+ t+ 1:

Now F



- F

�

, with F

2

[�; ℄ = F

2

[℄ % F

2

[�℄. Replaing �(x)  (x

3

� 2)=4

gives �

�

(t) = �



(t) = t

2

+ t+ 1 and

�

�

(t) = �



(t) = t

6

+ 931t

5

+ 2352t

4

+ 2499t

3

+ 1388t

2

+ 399t+ 45

= �

�

(t)

3

+ 2

�

(464t

3

+ 709t

2

+ 73t� 91)�

�

(t) + 216t+ 113

�

whih is of Eisenstein form, so that �(x) erti�es �.
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6. Ideal Fatorization and Integral Bases

Proposition 6.1. Let � be a root of � and let K = Q

p

(�), with O

K

its

ring of integers and P the unique non-zero prime ideal of O

K

. Assume

�(x) 2 Q

p

[x℄ and �(x) erti�es �. Then:

(i) O

K

= Z

p

[�(�)℄.

(ii) If �

�

(t) is irreduible in F

p

[t℄ then P = pO

K

.

(iii) If �

�

(t) = �

�

(t)

e

with e > 1 and �

�

(t) moni and irreduible in

F

p

[t℄, then

P = �

�

�

�(�)

�

O

K

and pO

K

= P

e

:

Proposition 6.2. Let f(x) be an irreduible moni polynomial in Z[x℄,

let � be a root of f , let K = Q(�), and let O be the ring of integers of

K. If f(x) = '

1

(x) � � �'

m

(x) is the omplete fatorization of f(x) into

distint moni irreduible polynomials in Z

p

[x℄ and if �

i

(x) erti�es '

i

(x)

for i = 1; : : : ; m, then

pO = p

e

1

1

� � � p

e

m

m

is the omplete fatorization of pO into prime ideals in O, where

p

i

= pO + �

i

O

e

i

= e

K=Q

(p

i

) = deg'

i

=deg �

�

i

f

i

= f

K=Q

(p

i

) = deg �

�

i

for i = 1; : : : ; m, with �

�

i

and �

�

i

being omputed with respet to '

i

and

�

i

being any element of K satisfying

�

i

� �

�

i

�

�

i

(�)

�

mod pZ

p

[�℄:

Proposition 6.3. Let f , et., be as in Proposition 6.2. For i = 1; : : : ; m

let �

i

be a root of '

i

and let "

i

(x) 2 Q

p

[x℄, satisfying

"

i

(�

j

) =

(

1 if '

i

(�

j

) = 0;

0 if '

i

(�

j

) 6= 0

for j = 1; : : : ; n. Then

O

p

= b"

1

(�)Z[b�

1

(�)℄ + � � � + b"

m

(�)Z[b�

m

(�)℄

is a p-maximal order in O; that is to say, p - [O : O

p

℄. Here we are taking

b�

i

(x) 2 Q [x℄; b�

i

(x) � �

i

(x) mod p

2

Z

p

[x℄;

b"

i

(x) 2 Q [x℄; b"

i

(x) � "

i

(x) mod p

d+1

Z

p

[x℄

with d a natural number suh that p

d

�

i

(x) 2 Z

p

[x℄ for i = 1; : : : ; m.
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Appendix A. Computing the p-adi GCD.

Let relatively prime polynomials 	

1

(x) and 	

2

(x) in Z

p

[x℄ be given, suh

that

�(x) j 	

1

(x)	

2

(x) and p

r

0

Z

p

[x℄ =

�

	

1

(x)Z

p

[x℄ + 	

2

(x)Z

p

[x℄

�

\Z

p

:

De�ne

G

1

(x) = gd

�

�(x);	

1

(x)

�

; H

1

(x) = 	

1

(x)=G

1

(x);

G

2

(x) = gd

�

�(x);	

2

(x)

�

; H

2

(x) = 	

2

(x)=G

2

(x);

so that

�(x) = G

1

(x)G

2

(x);

and let

p

s

1

Z

p

=

�

G

2

(x)Z

p

[x℄ + H

1

(x)Z

p

[x℄

�

\ Z

p

;

p

s

2

Z

p

=

�

G

1

(x)Z

p

[x℄ + H

2

(x)Z

p

[x℄

�

\ Z

p

:

Beause 	

1

(x) = G

1

(x)H

1

(x) and 	

2

(x) = G

2

(x)H

2

(x) we have s

1

� r

0

and s

2

� r

0

.

For j = 1; 2 let S

�;	

j

be the Sylvester matrix of � and 	

j

. It is lear

that row-redution of S

�;	

j

over Q

p

gives the oeÆients of G

j

(x) in its last

non-zero row. It follows (beause the rank is invariant) that row-redution

of S

�;	

j

over Z

p

gives the oeÆients of p

r

j

G

j

(x) in its last non-zero row,

for some r

j

� 0. Sine

p

s

j

G

j

(x) 2 �(x)Z

p

[x℄ + 	

j

(x)Z

p

[x℄

it follows that r

j

� s

j

, and sine

p

r

j

2

�(x)

G

j

(x)

Z

p

[x℄ +

	

j

(x)

G

j

(x)

Z

p

[x℄

it follows that s

j

� r

j

; hene r

j

= s

j

.

If m > r

0

then row-redution of S

�;	

j

over Z

p

performed modulo p

m

gives in its last non-zero row the oeÆients of p

s

j

�

j

(x), with �

j

(x) in

Z

p

[x℄, �

j

(x) moni, and

�

j

(x) � G

j

(x) (mod p

m�s

j

Z

p

[x℄):

It follows that

�

1

(x) � gd

�

�(x);	

1

(x)

�

(mod p

m�r

0

Z

p

[x℄);

�

2

(x) � gd

�

�(x);	

2

(x)

�

(mod p

m�r

0

Z

p

[x℄):

Remark A.1. In the onstrution of �

1

(x) and �

2

(x) it is suÆient to

have approximations to �(x), 	

1

(x), and 	

2

(x) that are orret modulo

p

m

Z

p

[x℄.
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Appendix B. Hensel Lifting

The well-known tehnique of Hensel lifting allows a suÆiently aurate

approximate p-adi fatorization of a polynomial to be re�ned to any de-

sired degree of preision.

Suppose f(x); f

1

(x); f

2

(x); : : : ; f

m

(x) are moni polynomials belonging

to Z

p

[x℄ and a

1

(x), a

2

(x), : : : , a

m

(x) are polynomials in Z

p

[x℄ suh that

f(x) �

m

Y

j=1

f

j

(x) (mod p

e

Z

p

[x℄);

p

d

�

m

X

j=1

a

j

(x)

Y

i 6=j

f

i

(x) (mod p

d+1

Z

p

[x℄);

with d � 0 and e � 2d+ 1. Taking

u(x) = p

�e

�

f(x)�

m

Y

j=1

f

j

(x)

�

and de�ning

g

j

(x) = u(x)a

j

(x) mod f

j

(x);

b

f

j

(x) = f

j

(x) + p

e�d

g

j

(x);

for 1 � j � m, gives

f(x) �

m

Y

j=1

b

f

j

(x) (mod p

e+1

Z

p

[x℄);

p

d

�

m

X

j=1

a

j

(x)

Y

i 6=j

b

f

i

(x) (mod p

d+1

Z

p

[x℄);

with

b

f

j

(x) � f

j

(x) mod p

e�d

Z

p

[x℄ for 1 � j � m.
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Appendix C. Fast Computation of �



Let (x) 2 O

�

and let p

d

be the redued disriminant of �. For 0 � k � n

let

a

k;1

x

n�1

+ a

k;2

x

n�2

+ � � � + a

k;n

= (x)

k

mod �(x) 2 p

�d

Z

p

[x℄:

De�ne

G =

0

B

B

B

B

B

�

a

n;1

a

n;2

� � � a

n;n�1

a

n;n

a

n�1;1

a

n�1;2

� � � a

n�1;n�1

a

n�1;n

.

.

.

.

.

.

.

.

.

.

.

.

a

1;1

a

1;2

� � � a

1;n�1

a

1;n

a

0;1

a

0;2

� � � a

0;n�1

a

0;n

1

C

C

C

C

C

A

and let

A =

0

�

p

d

G I

p

d+1

I 0

0 pI

1

A

:

Row-redution of A over Z

p

yields its p-adi Hermite normal form

HNF

p

(A) =

0

�

B �

0 C

0 0

1

A

with

B =

0

B

B

B

B

B

�

� � � � � � �

� � � � � �

.

.

.

.

.

.

.

.

.

0 � �

�

1

C

C

C

C

C

A

; C =

0

B

B

B

B

B

�



n;0



n;1

� � � 

n;n�1



n;n



n�1;1

� � � 

n�1;n�1



n�1;n

.

.

.

.

.

.

.

.

.

0 

1;n�1



1;n



0;n

1

C

C

C

C

C

A

:

For 0 � k � n let

h

k

(t) = 

k;n�k

t

k

+ 

k;n�k+1

t

k�1

+ � � � + 

k;n

and de�ne

H = pZ

p

[x℄ + pZ

p

[(x)℄ + �(x)Q

p

[x℄;

L =

�

h(t) 2 Z

p

[t℄

�

�

h((x)) 2 H

	

;

J = h

0

(t)Z

p

[t℄ + h

1

(t)Z

p

[t℄ + � � �+ h

n

(t)Z

p

[t℄;

P =

�

h(t) 2 Z

p

[t℄

�

�

v

�

p

�

h()

�

> 0

	

:
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Observe the following.

(1) L = h

0

(t)Z

p

+ h

1

(t)Z

p

+ � � �+ h

n

(t)Z

p

+ �



(t)Z

p

[t℄.

(2) pZ

p

[t℄�L.

(3) �



(t)� h

n

(t) 2 h

0

(t)Z

p

+ h

1

(t)Z

p

+ � � �+ h

n�1

(t)Z

p

.

(4) L�J�P .

(5) J is an ideal in Z

p

[t℄ and �



(t) 2 J .

(6) There exists a moni polynomial �(t) 2 Z

p

[t℄ suh that

J = �(t)Z

p

[t℄ + pZ

p

[t℄:

(7) �(t) = gd

�

h

0

(t); : : : ; h

n

(t)

�

.

(8) P is an ideal in Z

p

[t℄ and pZ

p

[t℄�P .

(9) There exists a moni polynomial �(t) 2 Z

p

[t℄ suh that

P = �(t)Z

p

[t℄ + pZ

p

[t℄:

(10) The polynomial �(t) is ongruent modulo p to the produt of the

distint irreduible fators of �



(t) modulo p. In other words, �(t)

is the squarefree part of �



(t) in F

p

[t℄.

(11) �(t) j �(t), sine J�P .

(12) p

d+1

O

�

�pZ

p

[x℄ + �(x)Q

p

[x℄�H.

(13) v

�

p

�

�()

�

� 1=n =) v

�

p

�

�()

n(d+1)

�

� d+ 1

=) �((x))

n(d+1)

2 p

d+1

O

�

=) �((x))

n(d+1)

2 H

=) �(t)

n(d+1)

2 L

=) �(t)

n(d+1)

2 J:

Therefore �(t) j �(t)

n(d+1)

.

It follows that the distint irreduible fators of �(t) and �(t) in F

p

[t℄ are the

same, and therefore that the distint irreduible fators of �(t) and �



(t)

in F

p

[t℄ are the same. If �(t) is a power of a single irreduible polynomial

modulo p then that irreduible polynomial is �



(t), modulo p; otherwise 

fails the Hensel test.
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Appendix D. Experimental Results

The new algorithm is inluded in the forthoming Pari/GP 2.2.0. Tests

were run to ompare the new version with Pari/GP 2.0.16, Kant V4/

Kash 2.2, and Magma 2.7. The tests were run on a Pentium MMX

200MHz with 80Mo of RAM. Computations running more than one hour

were interrupted. (Polynomial f

30

produed an error with Magma.) Exe-

ution times are expressed in seonds.

poly-

nomial

loal

dis

redued

dis

GP

2.2.0

GP

2.0.16

Kash

2.2

Magma

2.7

f

1

2

15

2

4

0.12 0.11 0.09 0.53

f

2

2

10

2

2

0.05 0.06 0.06 0.57

f

3

3

9

3 0.04 0.04 0.05 0.35

f

4

3

6

3

2

0.09 0.11 0.06 1.78

f

5

2

10

2 0.02 0.02 0.02 1.20

f

6

2

15

2

6

0.06 0.05 0.06 2.22

f

7

2

15

2

4

0.14 0.16 0.12 0.50

f

8

5

4

5

2

0.09 0.11 0.10 0.96

f

9

2

14

2

4

0.07 0.13 0.16 0.45

f

10

1289

2

1289

2

0.15 0.17 0.10 2.59

f

11

2

22

2

4

0.08 0.11 0.11 2.55

f

12

3

20

3

2

0.07 0.08 0.05 0.94

f

13

11

3

11

2

0.16 0.17 0.13 1.45

f

14

17

2

17

2

0.11 0.13 0.09 1.69

f

15

2

32

2

3

0.10 0.13 0.10 0.40

f

16

2

12

2

2

0.10 0.13 0.12 0.90

f

17

2

16

2

3

0.18 0.21 0.19 3.08

f

18

7

14

7 0.10 0.10 0.11 0.51

f

19

71

2

71

2

0.26 0.30 0.20 3.77

f

20

3

15

3 0.34 0.43 0.21 1.70

f

21

5

20

5

2

0.08 0.09 0.11 0.79

f

22

3

15

3 0.14 0.16 0.11 2.09

f

23

3

15

3 0.39 0.47 0.28 3.27

f

24

2

72

2

13

0.27 0.40 0.53 4.19

f

25

47

20

47

2

1.50 1.76 0.81 16.22

f

26

61

98

61

16

1.63 54.47 18.30 7.05

f

27

2

92

2

9

1.42 421.00 710.00 7.10

f

28

3

166

3

20

1.97 73.00 175.00 > 1 hr

f

29

3

82

3

8

1.37 16.64 7.75 15.01

f

30

2

284

2

9

7.16 > 1 hr 1960.00 (error)

f

31

2

544

2

28

45.20 > 1 hr > 1 hr 22.60

f

32

2

240

2

18

13.60 > 1 hr 235.00 370.00
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Examples from Ford & Letard [4℄

f

1

= x

9

� 2x

4

� 10x

3

+ x� 2

f

2

= x

9

� 2x

5

+ 17x

3

+ 4

f

3

= x

9

� 2x

3

� 10

f

4

= x

10

+ 7x

9

� 2x

8

� 2x

7

� 3x

5

+ x

4

+ 1

f

5

= x

10

� 4x

9

� 8x

5

+ 5x

4

+ 1

f

6

= x

10

� 2x

9

� 15

f

7

= x

11

+ x

8

� 2x

2

+ 4

f

8

= x

11

� x

6

� 2x

3

� 12x

2

� 6

f

9

= x

11

� x

10

� x

4

� 4

f

10

= x

12

� 3x

9

+ 4x

8

� x

6

� x

2

+ 10

f

11

= x

12

+ 4x

11

+ 5x

10

+ 6x

6

� 3x

4

+ 12

f

12

= x

12

+ x

9

� 9x

7

� 2x

6

� 9x

5

� 6

f

13

= x

13

+ 6x

10

� 10x

5

+ 9x

2

� 2

f

14

= x

13

+ x

10

+ x

9

� 4x

8

� x

4

+ x

2

� 1

f

15

= x

13

+ x

11

� 8

f

16

= x

14

� x

12

� x

7

+ 10x

5

� 4

f

17

= x

14

+ 2x

8

+ 6x� 1

f

18

= x

14

� 8x

7

+ 418

f

19

= x

15

+ 4x

11

+ 12x

10

+ x

3

� 4

f

20

= x

15

+ 9x

5

+ 1

f

21

= x

15

� 13x

5

� 2

f

22

= x

15

� 30x

13

+ 360x

11

� 2200x

9

+ 7200x

7

� 12096x

5

+ 8960x

3

� 120x

� 249

f

23

= x

15

� 30x

13

+ 360x

11

� 2200x

9

+ 7200x

7

� 12096x

5

+ 8960x

3

� 120x

� 257

f

24

= x

16

+ 132x

14

+ 6868x

12

+ 179570x

10

+ 2494972x

8

+ 18111820x

6

+ 65000173x

4

+ 102234000x

2

+ 46240000

f

25

= x

21

� 42x

19

+ 756x

17

� 7616x

15

+ 47040x

13

� 183456x

11

+ 448448x

9

� 658944x

7

+ 532224x

5

� 197120x

3

+ 21504x � 1691
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Examples for whih PARI 2.0.16 performs poorly

f

26

= x

12

� 181170x

11

+ 13676070375x

10

� 564635734535475x

9

+ 14120575648656756795x

8

� 224213861531349946866060x

7

+ 2299324928127100837257833640x

6

� 15120132032108410885407953780505x

5

+ 61607021939453175254804920116967515x

4

� 144536083330213614666317706146365094565x

3

+ 170426077617455313511361437803852538934904x

2

� 83139235455474245627641509862888062014092560x

+ 12253655221465755667504199645608996691723374656

f

27

= x

16

� 12x

14

� 84x

13

� 196x

12

+ 2856x

11

+ 6328x

10

� 42336x

9

� 64820x

8

+ 352464x

7

+ 298928x

6

� 1776096x

5

� 262416x

4

+ 5458656x

3

� 1875872x

2

� 6688416x + 7866576

f

28

= x

16

� 432x

14

+ 68688x

12

� 4717440x

10

+ 112637304x

8

+ 409406400x

6

+ 2774305728x

4

+ 4041156096x

2

+ 11224978704

f

29

= x

24

+ 57x

22

+ 1197x

20

+ 13681x

18

+ 136854x

16

+ 1048044x

14

+ 4603892x

12

+ 11460015x

10

+ 16001100x

8

+ 11131014x

6

+ 2739339x

4

� 368793x

2

� 7569

f

30

= x

32

+ 16

f

31

= x

32

+ 160x

30

+ 11216x

28

+ 455360x

26

+ 11928052x

24

+ 212540000x

22

+ 2645190320x

20

+ 23223642560x

18

+ 143402547926x

16

+ 613283590880x

14

+ 1764753386480x

12

+ 3275906117440x

10

+ 3788371498452x

8

+ 2940754348320x

6

+ 1769278869776x

4

+ 73445288000x

2

+ 87782430961

f

32

= x

40

� 2x

39

+ 3x

38

� 22x

37

+ 26x

36

� 2x

35

+ 185x

34

� 120x

33

� 270x

32

� 1232x

31

+ 689x

30

+ 1972x

29

+ 4298x

28

� 2588x

27

� 6040x

26

� 5558x

25

+ 19939x

24

+ 21850x

23

+ 12277x

22

� 20890x

21

+ 4071x

20

+ 28388x

19

+ 35210x

18

+ 10304x

17

+ 18728x

16

+ 1408x

15

� 3352x

14

� 16288x

13

+ 20512x

12

+ 16320x

11

� 37728x

10

� 13312x

9

� 7168x

8

+ 2560x

7

� 1280x

6

� 7680x

5

+ 10496x

4

+ 7168x

3

+ 512x

2

+ 2048x + 1024

Example f

26

is from [1℄; example f

32

is from [3℄. The other examples are due

to Karim Belabas, Bill Allombert, and Igor Shein of the Pari development

team.
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