ON THE NUMBER OF POINTS OF SOME KUMMER CURVES OVER FINITE FIELDS

FLORIN NICOLAE

Let l be a prime number and let $k = \mathbb{F}_q$ be a finite field of characteristic $p \neq l$ with $q = p^f$ elements. Let $n \geq 1$. The curve

$$C_n: y^l = x(x^{l^n} - 1)$$

is smooth of genus $g_n = \frac{\varphi(l^{n+1})}{2} = \frac{l^n(l-1)}{2}$ over k. Let F_n/k be the function field of C_n , let \mathbb{P}_{F_n} denote the set of places, and let $\mathrm{Div} F_n$ denote the group of divisors of F_n/k . The absolute norm $\mathfrak{N}(\mathfrak{P})$ of a place $\mathfrak{P} \in \mathbb{P}_{F_n}$ is the cardinality of its residue class field. It holds $\mathfrak{N}(\mathfrak{P}) = q^{\deg \mathfrak{P}}$, with a natural number $\deg \mathfrak{P} \geq 1$, the degree of \mathfrak{P} . The Zeta function of the curve C_n is a meromorphic function in the complex plane, defined for $\mathrm{Re}\,s > 1$ by

$$\zeta_{C_n}(s) = \prod_{\mathfrak{P} \in \mathbb{P}_{F_n}} \frac{1}{1 - \frac{1}{\mathfrak{N}(\mathfrak{P})^s}} = \sum_{\mathfrak{A} \in \mathrm{Div}F_n, \, \mathfrak{A} \geq 0} \frac{1}{\mathfrak{N}(\mathfrak{A})^s}.$$

Denoting for $m \geq 0$ by A_m the number of positive divisors of degree m it holds

$$\zeta_{C_n}(s) = \sum_{m=0}^{\infty} \frac{A_m}{q^{ms}}.$$

The power series

$$Z_{C_n}(t) := \sum_{m=0}^{\infty} A_m t^m$$

is convergent for $|t| < q^{-1}$ and represents a rational function

$$Z_{C_n}(t) = \frac{L_{C_n}(t)}{(1-t)(1-qt)},$$

where $L_{C_n}(t) = q^{g_n} t^{2g_n} + \ldots + 1$ is a polynomial with coefficients in \mathbb{Z} of degree $2g_n$. For $r \geq 1$ let N_r be the number of \mathbb{F}_{q^r} -rational points of the projective closure of C_n . Since the plane curve C_n has only one point (0:1:0) at infinity, it holds

$$N_1 = N + 1$$

where N is the number of solutions (x, y) in k of the equation

$$y^l = x(x^{l^n} - 1).$$

Let |X| denote the number of elements of a finite set X.

Lemma 1. If $B(x) \in k[x]$ is a polynomial with a simple root $x_1 \in k$:

$$B(x) = (x - x_1)B_1(x), B_1(x) \in k[x], B_1(x_1) \neq 0,$$

Date: November 13, 2005.

then the number of solutions in k of the equation

$$y^l = B(x)$$

is

$$N = \frac{1}{l} \sum_{j=0}^{l-1} |\mathcal{A}_j|,$$

where for $0 \le j \le l-1$

$$\mathcal{A}_j := \{(x, y) \in k \times k \mid y^l = \xi^j B_1(\xi^j x^l + x_1)\},$$

 ξ a generator of the cyclic multiplicative group k^* .

Proof: I) The case $q \equiv 1 \pmod{l}$. Let χ be a character of k^* of order l such that

$$\chi(\xi) = \omega = e^{\frac{2\pi i}{l}}.$$

Put $\chi(0) := 0$. It holds

$$N = q + \sum_{r=1}^{l-1} \sum_{c \in k} \chi^r(B(c)) = q + \sum_{r=1}^{l-1} \sum_{c \in k} \chi^r((c - x_1)B_1(c)) =$$

$$= q + \sum_{r=1}^{l-1} \sum_{c \in k} \chi^r(c - x_1)\chi^r(B_1(c)) =$$

$$= q + \sum_{r=1}^{l-1} \sum_{0 \le i,j \le l-1} \sum_{c \in A, \chi^r(c - x_1) = \omega^i, \chi^r(B_1(c)) = \omega^j} \omega^{i+j} =$$

$$= q + \sum_{r=1}^{l-1} \sum_{s=0}^{l-1} \omega^s \cdot \sum_{0 \le i,j \le l-1, i+j \equiv s \pmod{l}} |A_{i,j}^{(r)}|,$$

where

$$A := \{c \in k \mid B(c) \neq 0\}, \ A_{i,j}^{(r)} = \{c \in A \mid \chi^r(c - x_1) = \omega^i, \chi^r(B_1(c)) = \omega^j\}.$$

For $1 \le r \le l-1$ let r^{-1} denote the representative in $1, \ldots, l-1$ of the class \hat{r}^{-1} in the multiplicative group of non-zero residues modulo l. It holds

$$A_{i,j}^{(r)} = A_{r^{-1}i,r^{-1}j}^{(1)}$$

hence

$$\sum_{r=1}^{l-1} \sum_{s=0}^{l-1} \omega^{s} \cdot \sum_{0 \leq i, j \leq l-1, i+j \equiv s \pmod{l}} |A_{i,j}^{(r)}| = \sum_{r=1}^{l-1} \sum_{s=0}^{l-1} \omega^{s} \cdot \sum_{i=0}^{l-1} |A_{r^{-1}i,r^{-1}(s-i)}^{(1)}| =$$

$$= \sum_{r=1}^{l-1} \sum_{s=0}^{l-1} \omega^{s} \cdot \sum_{j=0}^{l-1} |A_{j,r^{-1}s-j}^{(1)}| = \sum_{r=1}^{l-1} \sum_{j=0}^{l-1} \sum_{s=0}^{l-1} \omega^{s} |A_{j,r^{-1}s-j}^{(1)}| =$$

$$= \sum_{r=1}^{l-1} \sum_{j=0}^{l-1} \sum_{t=0}^{l-1} \omega^{rt} |A_{j,t-j}^{(1)}| = \sum_{t=0}^{l-1} (\sum_{r=1}^{l-1} \omega^{rt}) \sum_{j=0}^{l-1} |A_{j,t-j}^{(1)}| =$$

$$= (l-1) \sum_{j=0}^{l-1} |A_{j,l-j}^{(1)}| + \sum_{t=1}^{l-1} (-1) \sum_{j=0}^{l-1} |A_{j,t-j}^{(1)}| =$$

$$= l \sum_{j=0}^{l-1} |A_{j,l-j}^{(1)}| - \sum_{i,j=0}^{l-1} |A_{i,j}^{(1)}| = l \sum_{j=0}^{l-1} |A_{j,l-j}^{(1)}| - |A|,$$

SO

$$N = q + l \sum_{j=0}^{l-1} |A_{j,l-j}^{(1)}| - |A|.$$

For 0 < j < l - 1 it holds

$$A_{j,l-j}^{(1)} = \{ c \in A \mid \chi(c - x_1) = \omega^j, \chi(B_1(c)) = \omega^{l-j} \} =$$

$$= \{ c \in A \mid \exists (t, u) \in k^* \times k^* : c - x_1 = \xi^j t^l, B_1(c) = \xi^{l-j} u^l \}.$$

Let

$$A_{j} := \{(t, u) \in k \times k \mid B_{1}(\xi^{j}t^{l} + x_{1}) = \xi^{l-j}u^{l}\},$$

$$B_{j} := \{(0, u) \mid \xi^{l-j}u^{l} = B_{1}(x_{1})\} \cup \{(t, 0) \mid B_{1}(\xi^{j}t^{l} + x_{1}) = 0\},$$

$$0 \le j \le l - 1. \text{ Let } \rho \in k^{*} \setminus \{1\} \text{ with } \rho^{l} = 1. \text{ For } 0 \le j \le l - 1 \text{ the map}$$

$$g_j: A_j \setminus B_j \to A_{j,l-j}^{(1)},$$

 $g_j(t,u) := \xi^j t^l + x_1$

is surjective with the fibers

$$g_i^{-1}(c) = \{ (\rho^d t, \rho^e u) \mid 0 \le d, e \le l \}$$

for $c \in A_{j,l-j}^{(1)}$ and fixed $(t,u) \in A_j \setminus B_j$ such that $g_j(t,u) = c$ consisting of l^2 elements. Therefore

$$|A_{j,l-j}^{(1)}| = \frac{1}{l^2}|A_j| - \frac{1}{l^2}|B_j| =$$

$$= \frac{1}{l^2}|A_j| - \frac{1}{l^2}|\{c \in k \mid \xi^{l-j}c^l = B_1(x_1)\}| - \frac{1}{l^2}|\{c \in k \mid B_1(\xi^jc^l + x_1) = 0\}|,$$

and so

$$l\sum_{j=0}^{l-1} |A_{j,l-j}^{(1)}| = \frac{1}{l} \sum_{j=0}^{l-1} |A_j| - \frac{1}{l} \sum_{j=0}^{l-1} |\{c \in k \mid \xi^{l-j} c^l = B_1(x_1)\}| - \frac{1}{l} \sum_{j=0}^{l-1} |\{c \in k \mid B_1(\xi^j c^l + x_1) = 0\}| =$$

$$= \frac{1}{l} \sum_{j=0}^{l-1} |A_j| - 1 - |\{d \in k \mid B_1(d) = 0\}|.$$

Since

$$k = A \cup \{c \in k \mid B(c) = 0\} = A \cup \{c \in k \mid B_1(c) = 0\} \cup \{x_1\}$$

it follows that

$$N = q + l \sum_{j=0}^{l-1} |A_{j,l-j}^{(1)}| - |A| =$$

$$= q + \frac{1}{l} \sum_{j=0}^{l-1} |A_j| - 1 - |\{d \in k \mid B_1(d) = 0\}| - |A| =$$

$$= \frac{1}{l} \sum_{j=0}^{l-1} |A_j| = \frac{1}{l} \sum_{j=0}^{l-1} |A_j|,$$

because the map

$$A_j \to A_j, (x,y) \mapsto (x,\xi^{-1}y)$$

is bijective.

II) The case $q \not\equiv 1 \pmod{l}$. Each element of k has one and only one l-th root in k. It holds

$$N = q$$
, $|\mathcal{A}_i| = q$, $0 \le j \le l - 1$.

For a character φ of the multiplicative group k^* let

$$\tau(\varphi) := -\sum_{c \in k^*} \varphi(c) \exp(\frac{2\pi i}{p} \operatorname{Tr}_{k/\mathbb{F}_p} c)$$

be the corresponding Gauss sum. For two characters φ_1 and φ_2 of k^* let

$$\iota(\varphi_1, \varphi_2) := -\sum_{c \in k} \varphi_1(c)\varphi_2(1-c)$$

be the corresponding Jacobi sum. If $\varphi_1 \cdot \varphi_2 \neq 1$ then

(1)
$$\iota(\varphi_1, \varphi_2) = \frac{\tau(\varphi_1)\tau(\varphi_2)}{\tau(\varphi_1\varphi_2)}.$$

For each natural number $m \ge 1$ let $\zeta_m := \exp \frac{2\pi i}{m}$ and let $\mu_m := \{\zeta_m^j \mid 0 \le j \le m-1\}$ be the group of complex m-th roots of unity.

Proposition 1. a) If $q \not\equiv 1 \pmod{l}$ then $N_1 = q + 1$. b) If $q \equiv 1 \pmod{l^{n+1}}$ then

$$N_1 = q + 1 - \operatorname{Tr}_{\mathbb{Q}(\zeta_{l^{n+1}})/\mathbb{Q}}(\eta_n),$$

where

$$\eta_n := \iota(\psi^{l^n}, \psi).$$

 $\eta_n := \iota(\psi^{l^n}, \psi),$ ψ a character of k^* of order l^{n+1} .

Proof: a) If $q \not\equiv 1 \pmod{l}$ then $k^{*l} = k^*$, so for each element $c \in k$ there exists one and only one element $t \in k$ such that $t^l = c$, and so for each element $x \in k$ there exists one and only one element $y \in k$ such that $y^{l} = x(x^{l^{n}} - 1)$. This means that N = q, hence $N_1 = N + 1 = q + 1$. If $q \equiv 1 \pmod{l}$ and $q \not\equiv 1 \pmod{l^{n+1}}$, then the greatest power of l dividing q-1 is of the form l^m with $1 \leq m \leq n$. The cyclic multiplicative group k^* is the internal direct product of its subgroups U_{l^m} of order l^m and $U_{\frac{q-1}{l^m}}$ of order $\frac{q-1}{l^m}$. Let χ be a character of k^* of order l, and let ρ be a generator of the group U_{l^m} . It holds

$$N = |\{(x, y) \in k \times k \mid y^l = x(x^{l^n} - 1)\}| = q + \sum_{r=1}^{l-1} \sum_{c \in k} \chi^r(c(c^{l^n} - 1)).$$

For $1 \le r \le l-1$ it holds

$$\sum_{c \in k} \chi^r(c(c^{l^n} - 1)) = \sum_{d \in U_{\frac{q-1}{l^m}}} \sum_{j=0}^{l^m - 1} \chi^r(d\rho^j(d^{l^n}\rho^{jl^n} - 1)) =$$

$$=\sum_{d\in U_{\frac{q-1}{m}}}\sum_{j=0}^{l^m-1}\chi^r(\rho^jd(d^{l^n}-1))=[\sum_{j=0}^{l^m-1}\chi^r(\rho^j)]\cdot[\sum_{d\in U_{\frac{q-1}{m}}}\chi^r(d(d^{l^n}-1))]=0,$$

since

$$\sum_{i=0}^{l^m - 1} \chi^r(\rho^j) = 0,$$

 χ^r being a non-trivial character of the group U_{l^m} . It follows that N=q, and so $N_1=N+1=q+1$.

b) Let $q \equiv 1 \pmod{l^{n+1}}$, and let ψ be a character of k^* of order l^{n+1} such that $\psi(\xi) = \zeta_{l^{n+1}}, \xi$ a generator of the cyclic multiplicative group k^* . By lemma 1 with $x_1 = 0$ and $B_1(x) = x^{l^n} - 1$ it holds

$$N = |\{(x, y) \in k \times k \mid y^{l} = x(x^{l^{n}} - 1)\}| = \frac{1}{l} \sum_{i=0}^{l-1} |\mathcal{A}_{i}|,$$

where $A_j := \{(x,y) \in k \times k \mid y^l = \xi^j B_1(\xi^j x^l)\}, j = 1, \dots, l-1$. The A_j 's are diagonal curves of the form:

$$y^{l} - \xi^{j(l^{n}+1)} x^{l^{n+1}} = -\xi^{j}.$$

It holds ([Da-Ha],[Li-Ni], p. 291, Theorem 6.34)

$$|\mathcal{A}_{j}| = q - \sum_{r=1}^{l^{n+1}-1} \sum_{s=1}^{l-1} \psi^{r}(\xi^{-jl^{n}}) \psi^{sl^{n}}(-\xi^{j}) \iota(\psi^{r}, \psi^{sl^{n}}) =$$

$$= q - \sum_{r=1}^{l^{n+1}-1} \sum_{s=1}^{l-1} \zeta_{l^{n+1}}^{-rjl^{n}+sjl^{n}} \psi^{sl^{n}}(-1) \iota(\psi^{r}, \psi^{sl^{n}}) =$$

$$= q - \sum_{r=1}^{l^{n+1}-1} \sum_{s=1}^{l-1} \zeta_{l^{n}+1}^{jl^{n}(s-r)} \iota(\psi^{r}, \psi^{sl^{n}}),$$

since $\psi(-1) = 1$. It follows that

$$\begin{split} \sum_{j=0}^{l-1} |\mathcal{A}_j| &= lq - \sum_{j=0}^{l-1} \sum_{r=1}^{l^{n+1}-1} \sum_{s=1}^{l-1} \zeta_{l^{n+1}}^{jl^n(s-r)} \iota(\psi^r, \psi^{sl^n}) = \\ &= lq - \sum_{r=1}^{l^{n+1}-1} \sum_{s=1}^{l-1} \iota(\psi^r, \psi^{sl^n}) \sum_{j=0}^{l-1} \zeta_{l^{n+1}}^{jl^n(s-r)} = \\ &= lq - l \sum_{1 \le r \le l^{n+1}-1, \ 1 \le s \le l-1, \ l|s-r} \iota(\psi^r, \psi^{sl^n}). \end{split}$$

Therefore

$$N = \frac{1}{l} \sum_{j=0}^{l-1} |\mathcal{A}_j| = q - \sum_{1 \le r \le l^{n+1} - 1, \ 1 \le s \le l-1, \ l \mid s-r} \iota(\psi^r, \psi^{sl^n}) =$$
$$= q - \sum_{s=1}^{l-1} \sum_{i=0}^{l^n - 1} \iota(\psi^{s+il}, \psi^{sl^n}).$$

The automorphisms σ of the abelian field extension $\mathbb{Q}(\zeta_{l^{n+1}})/\mathbb{Q}$ are given by $\zeta_{l^{n+1}}^{\sigma} := \zeta_{l^{n+1}}^{s+il}, \ 1 \leq s \leq l-1, \ 0 \leq i \leq l^n-1$. It holds

$$\iota(\psi,\psi^{l^n})^{\sigma} = \iota(\psi^{s+il},\psi^{(s+il)l^n}) = \iota(\psi^{s+il},\psi^{sl^n})$$

hence

$$N = q - \sum_{s=1}^{l-1} \sum_{i=0}^{l^n - 1} \iota(\psi^{s+il}, \psi^{sl^n}) = q - \sum_{\sigma \in \operatorname{Gal}(Q(\zeta_{l^{n+1}})/\mathbb{Q})} \iota(\psi, \psi^{l^n})^{\sigma} =$$

$$= q - \operatorname{Tr}_{\mathbb{Q}(\zeta_{l^{n+1}})/\mathbb{Q}}(\iota(\psi, \psi^{l^n})). \square$$

Proposition 2. If $q \equiv 1 \pmod{l^{n+1}}$ then

$$L_{C_n}(t) = \prod_{\sigma \in Gal(\mathbb{Q}(\zeta_{n+1})/\mathbb{Q})} (1 - \eta_n^{\sigma} t),$$

where $\eta_n := \iota(\psi^{l^n}, \psi)$, ψ a character of order l^{n+1} of k^* .

Proof: The L-polynomial of the curve C_n/k can be written in the form $L_{C_n}(t) = \prod_{j=1}^{2g_n} (1 - \alpha_j t)$, where $\alpha_1, \ldots, \alpha_{2g_n}$ are algebraic integers. For $r \geq 1$ it holds ([St], p.166, Theorem V.1.15.)

(2)
$$N_r = q^r + 1 - \sum_{i=1}^{2g_n} \alpha_j^r$$

Let ψ be a character of order l^{n+1} of the cyclic group k^* . The map

$$\psi_r: \mathbb{F}_{q^r}^* \to \mathbb{C}^*, \psi_r(x) := \psi(N_{\mathbb{F}_{q^r}|\mathbb{F}_q}(x))$$

is a character of order l^{n+1} of the cyclic group $\mathbb{F}_{q^r}^*$, and it holds ([Da-Ha],0.8)

$$\tau(\psi_r) = \tau(\psi)^r,$$

hence by (1)

$$\iota(\psi_r^{l^n}, \psi_r) = \frac{\tau(\psi_r^{l^n})\tau(\psi_r)}{\tau(\psi_r^{l^n+1})} = \frac{\tau(\psi^{l^n})^r \tau(\psi)^r}{\tau(\psi^{l^n+1})^r} = \iota(\psi^{l^n}, \psi)^r,$$

so by Proposition 1

$$N_r = q^r + 1 - \sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta_{l^{n+1}})/\mathbb{Q})} \iota(\psi_r^{l^n}, \psi_r)^{\sigma} =$$

$$= q^r + 1 - \sum_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta_{(n+1)})/\mathbb{Q})} (\iota(\psi^{l^n}, \psi)^{\sigma})^r,$$

and so

$$\{\alpha_1, \dots, \alpha_{2g_n}\} = \{\iota(\psi^{l^n}, \psi)^{\sigma} \mid \sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta_{l^{n+1}})/\mathbb{Q})\}.\square$$

Let $m \geq 1$ be a natural number and let K be an algebraic number field with ring of integers \mathcal{O}_K such that $\zeta_m \in \mathcal{O}_K$. Let \mathfrak{p} be a prime ideal of \mathcal{O}_K not dividing m, and let $x \in \mathcal{O}_K$ not divisible by \mathfrak{p} . The number $x^{\frac{N_{K/\mathbb{Q}}(\mathfrak{p})-1}{m}}$ is congruent modulo \mathfrak{p} to one and only one root of unity $\zeta_m^l \in \mu_m$. The map

$$(\mathcal{O}_K/\mathfrak{p})\setminus\{0\}\to\mu_m,\,x\bmod\mathfrak{p}\mapsto\zeta_m^l$$

is a character of order m of the multiplicative group of the finite field $\mathcal{O}_K/\mathfrak{p}$ called the m-th power residue character modulo \mathfrak{p} .

Proposition 3. Let \mathfrak{p} be a prime divisor of p in the ring $\mathbb{Z}[\zeta_{l^{n+1}}]$. Let ψ be the l^{n+1} -th power residue character modulo \mathfrak{p} . Identifying the finite field \mathbb{F}_q with the residue class field $\mathbb{Z}[\zeta_{l^{n+1}}]/\mathfrak{p}$ it holds:

a) The absolute value of the complex number $\iota(\psi^{l^n}, \psi)$ is

$$|\iota(\psi^{l^n}, \psi)| = \sqrt{q};$$

b) The prime ideal decomposition of the principal ideal generated by $\iota(\psi^{l^n}, \psi)$ in the ring of integers $\mathbb{Z}[\zeta_{l^{n+1}}]$ is

$$\iota(\psi^{l^n}, \psi) \mathbb{Z}[\zeta_{l^{n+1}}] = \mathfrak{p}^{\sum_{0 \le u \le l^n - 1, 1 \le v \le l - 1: ul + v(1 + l^n) \le l^{n+1}} \sigma(u, v)^{-1}$$

where $\sigma(u,v)$ is, for $0 \le u \le l^n - 1, 1 \le v \le l - 1$, the automorphism of $\mathbb{Q}(\zeta_{l^{n+1}})/\mathbb{Q}$ defined by $\zeta_{l^{n+1}}^{\sigma(u,v)} := \zeta_{l^{n+1}}^{ul+v}$. c) In the ring $\mathbb{Z}[\zeta_{l^{n+1}}]$ it holds

$$\iota(\psi^{l^n}, \psi) \equiv 1 \pmod{(\zeta_{l^{n+1}} - 1)^{l^n + 1}}.$$

The number $\iota(\psi^{l^n}, \psi) \in \mathbb{Z}[\zeta_{l^{n+1}}]$ is uniquely determined by the properties a), b) and c).

Proof:

- a): Every Jacobi sum in a finite field with q elements has absolute value \sqrt{q} .
- b): By ([Ha1], p.40, (6.)) it holds

$$\iota(\psi^{l^n}, \psi) \mathbb{Z}[\zeta_{l^{n+1}}] = \mathfrak{p}^{\sum_{\sigma} d(-l^n j_{\sigma}, -j_{\sigma})\sigma},$$

where σ runs over the set of automorphisms of $\mathbb{Q}(\zeta_{l^{n+1}})$, j_{σ} mod l^{n+1} is defined by

$$\zeta_{l^{n+1}}^{\sigma^{-1}} = \zeta_{l^{n+1}}^{j_{\sigma}}$$

and

$$d(-l^{n}j_{\sigma}, -j_{\sigma}) = \begin{cases} 0 & \text{if } r(-l^{n}j_{\sigma}) + r(-j_{\sigma}) < l^{n+1} \\ 1 & \text{if } r(-l^{n}j_{\sigma}) + r(-j_{\sigma}) \ge l^{n+1} \end{cases},$$

r(x) the smallest non-negative residue of $x \mod l^{n+1}$. It holds

$$\sum_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta_{l^{n+1}})/\mathbb{Q})} d(-l^n j_{\sigma}, -j_{\sigma}) \sigma =$$

$$= \sum_{0 \le u \le l^n - 1, 1 \le v \le l - 1: r(-l^n (ul + v)) + r(-ul - v) \ge l^{n+1}} \sigma(u, v)^{-1} =$$

$$= \sum_{0 \le u \le l^n - 1, 1 \le v \le l - 1: r(-l^n v) + r(-ul - v) \ge l^{n+1}} \sigma(u, v)^{-1} =$$

$$= \sum_{0 \le u \le l^n - 1, 1 \le v \le l - 1: l^{n+1} - l^n v + l^{n+1} - ul - v \ge l^{n+1}} \sigma(u, v)^{-1} =$$

$$= \sum_{0 \le u \le l^n - 1, 1 \le v \le l - 1: ul + v(1 + l^n) \le l^{n+1}} \sigma(u, v)^{-1}.$$

c): For $c \in \mathbb{F}_q^*$ it holds

$$\psi(c) \equiv 1 \bmod (\zeta_{l^{n+1}} - 1)$$

and

$$\psi^{l^n}(c) \equiv 1 \mod (\zeta_{l^{n+1}} - 1)^{l^n}.$$

Indeed, if $\psi(c) = \zeta_{l^{n+1}}^k$, $0 \le k < l^{n+1}$, then $\psi(c) - 1 = \zeta_{l^{n+1}}^k - 1$ is divisible by $\zeta_{l^{n+1}} - 1$ in $\mathbb{Z}[\zeta_{l^{n+1}}]$ and $\psi^{l^n}(c) - 1$ is divisible by $\zeta_{l^{n+1}}^{l^n} - 1$ which is associate with $(\zeta_{l^{n+1}} - 1)^{l^n}$. Then

$$\iota(\psi^{l^n}, \psi) = -\sum_{c \in \mathbb{F}_q} \psi^{l^n}(c) \psi(1 - c) = -\sum_{c \in \mathbb{F}_q} \psi(c) \psi^{l^n}(1 - c) =$$

$$= -\sum_{c \neq 1} \psi(c) - \sum_{c \neq 0, 1} \psi(c) (\psi^{l^n}(1 - c) - 1) =$$

$$= 1 - \sum_{c \neq 0, 1} \psi(c) (\psi^{l^n}(1 - c) - 1) \equiv$$

$$\equiv 1 - \sum_{c \neq 0, 1} (\psi^{l^n}(1 - c) - 1) \bmod (\zeta_{l^{n+1}} - 1)^{l^n + 1} \equiv$$

$$\equiv 1 - \sum_{c \neq 0, 1} \psi^{l^n}(1 - c) + \sum_{c \neq 0, 1} 1 \bmod (\zeta_{l^{n+1}} - 1)^{l^n + 1} \equiv$$

 $\equiv 1+1+q-2 \mod (\zeta_{l^{n+1}}-1)^{l^n+1} \equiv q \mod (\zeta_{l^{n+1}}-1)^{l^n+1} \equiv 1 \mod (\zeta_{l^{n+1}}-1)^{l^n+1}.$ Two numbers in $\mathbb{Z}[\zeta_{l^{n+1}}]$ with the same absolute value and the same prime ideal decomposition differ by a root of unity. The only root of unity in $\mathbb{Z}[\zeta_{l^{n+1}}]$ which is $\equiv 1 \mod (\zeta_{l^{n+1}}-1)^{l^n+1}$ is 1. The properties a), b), c) determine the number $\iota(\psi^{l^n},\psi)$ in $\mathbb{Z}[\zeta_{l^{n+1}}]$. \square

References

- [Da-Ha] Davenport, H., Hasse, H., Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J.Reine Angew. Math. 172(1934), 151-182. 5, 6
- [Ha1] Hasse, H., Zetafunktion und L-Funktionen zu einem arithmetischen Funktionenkörper vom Fermatschen Typus, Abhandlungen der Deutschen Akademie der Wissenschaften Berlin, Math.-Nat. Kl. 1954, Nr. 4, 5-70.
- [Li-Ni] Lidl, R., Niederreiter, H., Finite Fields, Encyclopedia of Mathematics and Its Applications. 20. Cambridge: Cambridge Univ. Press, 1996. 5
- [St] Stichtenoth, H., Algebraic Function Fields and Codes, Springer, Berlin-Heidelberg, 1993. 6

BERLIN AND BUCHAREST

 $E ext{-}mail\ address: nicolae@math.tu-berlin.de}$