
J. Symboli Computation (1999) 11, 1{000

Finding normal integral bases of yli number �elds

of prime degree

Vinenzo Aiaro and Claus Fieker

Dipartimento di Informatia, Universita' degli Studi di Bari, via E. Orabona 4, Bari 70125, Italy

Tehnishe Universit�at Berlin, Fahbereih 3, Sekr. MA 8-1, Stra�e des 17. Juni 136, 10623 Berlin, Germany

(Reeived 18 Otober 1999)

Let L be a yli number �eld of prime degree p. In this paper we study how to ompute

eÆiently a normal integral basis for L, if there is at least one, assuming that an integral

basis � for L is known. We redue our problem to the problem of �nding the generator

of a prinipal ideal in the p-th ylotomi �eld.

1. Introdution

Let us assume that L = Q[�℄ is a yli number �eld of prime degree p over Q, given by

the minimal polynomial m

�

(x) of � over Q, and without loss of generality let us assume

that � 2 O, the ring of algebrai integers of L.

Let us assume as well that the onjugates of � give a basis for L as a vetor spae over

Q. The problem of �nding suh an element � is disussed for example in (Shlikewei

and Stepanov, 1993)

Let us assume that an integral basis �

1

; : : : ; �

p

for O is known. We reall that suh an

integral basis an be omputed using the algorithms desribed in (Cohen, 1995; Pohst

and Zassenhaus, 1989).

Let G = h�i be the Galois group of L over Q. If one assumes the Extended Riemann

Hypothesis, then it is possible to ompute � in time polynomial in the size of m

�

(x),

using the algorithm desribed in (Aiaro and Kl�uners, 1999).

We say that an element � 2 L gives a normal integral basis if the ring O of integers

of L is equal to

P

p

i=1

Z � �

i

(�). In this paper we study how to �nd eÆiently suh an

element �, if there is at least one.

Assuming the knowledge of the disriminant of L, there is a well known riterion

for the existene of normal integral bases for yli �elds of prime degree: L admits a

normal integral basis i�

p�1

p

d

L

2 Z is squarefree, i.e. the ondutor of L is squarefree

(Narkiewiz, 1989, p. 175).

From a theoretial point of view, the existene of an normal integral basis is quite

expliit: Let f be the ondutor of L. Sine Z[�

f

℄ is integrally losed it is easy to see that

�

f

generates an integral normal basis. Now Tr

Q(�

f

)=L

(�

f

) generates an normal integral

basis for L (Narkiewiz, 1989, p. 174).

From a pratial point of view, this is quite unsatisfaory sine we need to work in
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Q(�

f

) of degree �(f) whih usually is large in omparison to [L : Q℄. Therefore the

omputation of the relative trae will be quite diÆult.

The algorithm presented here has the advantage of working only in L and Q(�

p

) avoid-

ing the above mentioned problems. It turns out, that the running time of the algorithm

is essentially independend of the ondutor. It has been implemented using the number

theory pakage KASH (Daberkow et al., 1997), developed in Berlin by Prof. M. Pohst

and his ollaborators.

1.1. Modules over Group Rings

Let Z[G℄ denote the group ring of G over Z. Observe �rst that Z[G℄ is ommutative,

and that

Z[G℄

�

=

Z�Z�� � � � �Z�

p�1

�

=

Z[x℄=(x

p

� 1) (1.1)

(this follows from the fat, that Æ : Z[x℄ ! Z[G℄ : x 7! � is surjetive with kernel

generated by x

p

� 1)

The representation of elements of Z[G℄ as polynomials is essentially unique:

Lemma 1.1. Let P 2 Z[x℄ then we have:

P (�) = 0 2 Z[G℄ i� P (1) = 0 and P (�

p

) = 0

Proof. Let P 2 Z[x℄ suh that P (�) = 0. From (1.1) we immediately get x

p

� 1jP (x)

and therefore P (1) = P (�

p

) = 0.

On the other hand, suppose P (1) = P (�

p

) = 0. Then x� 1jP (x) and x

p�1

+ � � � 1jP (x)

and thus x

p

�1jP (x). Initially, the divisibility is only valid in Q[x℄, but sine the divisors

are moni, the divisibility in Z[x℄ follows too. 2

From now on, let us assume that L is known to have a normal integral basis.

The next lemma gives us a neesary ondition for an element � 2 O to generate a

normal integral basis.

Lemma 1.2. Let us assume that L=Q is normal, and that � generates a normal integral

basis. Then jTr(�)j = 1.

Proof. Let �

1

; : : : ; �

p

be the onjugates of � and t = Tr(�). Then t = �

1

+ :::+ �

p

and

1 = (1=t)(�

1

+ :::+ �

p

). Sine � generates a normal integral basis it follows that 1=t 2 Z

and therefore jtj = 1. 2

Note that if � gives a normal integral basis, then �� gives a normal integral basis as well,

hene without loss of generality we an assume that the sought element � has trae one.

The following lemma is simply another way to state the fat that there exists an

element � 2 O suh that Z � � +Z � �(�) + : : :+Z � �

p�1

(�) = O.

Lemma 1.3. The �eld L possesses a normal integral basis over Z if and only if the ring

O is free of rank one as a Z[G℄ module.

Unfortunately, it is quite diÆult to deal diretly with the ring Z[G℄. However, the ring
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Z[G℄ has a quotient whih is a nie Dedekind domain, and we are going now to exhibit

it.

Let �

p

denote a primitive p-th root of unity, and let R denote the ring of integers of

the p-th ylotomi �eld Q(�

p

). Let s = 1 + � + � � � + �

p�1

2 Z[G℄, and let (s) denote

the prinipal ideal generated by s in Z[G℄, that is s Z[G℄. Then learly Z[G℄=(s) is a

ommutative ring.

Let us de�ne a ring homomorphism � : Z[G℄! R, by

�(

p�1

X

i=0

a

i

�

i

) =

p�1

X

i=0

a

i

�

i

p

a

i

2 Z

Then we have the following theorem, whih is fundamental for the rest of the paper.

Theorem 1.4. Z[G℄=(s)

�

=

R, under the homomorphism �.

Proof. See (Curtis and Reiner, 1963, Lemma 74.4, p. 509) 2

The following theorem is an easy onsequene of Theorem 1.4.

Theorem 1.5. If the �eld L possesses a normal integral basis, then the ring O=sO is

free of rank one over Z[G℄=(s). Moreover, if � gives a normal integal basis for L, then

� + sO is a free generator for O=sO as a Z[G℄=(s) module.

Proof. This is a standard result from algebra, see for example (Lang, 1993, p. 136). 2

The next thing to notie is that the ideal sO is just Z, sine sO is just the set of

absolute traes from O, and it ontains the element 1 by lemma 1.2. Therefore we are

led to the following

Problem: Find a free generator � +Z for O=Z as a Z[G℄=(s) module.

In Setion 1.2 we desribe our algorithmi solution to this problem.

Let us assume now that we have found a free generator for O=Z as a Z[G℄=(s) module.

We want to lift this generator to a free generator for O as a Z[G℄ module. Now, lemma

1.2 tells us that in order to �nd a representative � = � +  of � + Z we have to require

that Tr(�+ ) = �1. This is easily done, sine Tr(�+ ) = Tr(�)+p. In partiular, note

that it is neessary to have Tr(�) � �1 (mod p).

1.2. Modules over Dedekind Domains

In what follows we denote the ation of an element �

j

2 G on an element � 2 L by

�

j

� � rather than by �

j

(�). Next, we extend this ation by linearity on the whole of

Z[G℄, and we write g � � to denote the ation of g 2 Z[G℄ on � 2 L.

Let d be arbitrary suh that

O �M = Z[G℄ � (�=d)

e.g. one ould take the disriminant of the set f�; �(�); : : : ; �

p�1

(�)g, sine it is a stan-

dard fat from number theory that O is ontained in the free Z[G℄ moduleM generated
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by �=d. By hypothesis O has a normal integral basis generated by �, and we an write

� = g � (�=d)

for some g 2 Z[G℄, so we an write

Z[G℄ g � (�=d) = O �M = Z[G℄ � (�=d)

Our objetive is to �nd g. Let f�

1

; : : : ; �

p

g be a known integral basis for O. Sine by

hypothesis

O =

p

X

i=1

Z �

i

(where the sum is diret) and L is normal, we must have

O =

p

X

i=1

Z[G℄ � �

i

(where the last sum is not diret). In other words, the �

i

's form a set of generators of

O as a Z[G℄ module. We want to ompute a single free generator � from the given set

f�

1

; : : : ; �

p

g.

Now, using linear algebra omputations, we an express eah element �

i

of the known

integral basis as a linear ombination with integral oeÆients a

ij

of the elements f�=d; ��

(�=d); : : : ; �

p�1

� (�=d)g. In other words, for i = 1; : : : ; p we an write

�

i

=

p

X

j=1

a

ij

�

j�1

� (�=d)

that is

�

i

= g

i

� (�=d)

with

g

i

=

p

X

j=1

a

ij

�

j�1

2 Z[G℄

Therefore we an write

O =

 

p

X

i=1

Z[G℄ g

i

!

� (�=d)

In partiular, this implies that, if we let � = g � (�=d) then we must have the following

equality of ideals of Z[G℄:

Z[G℄ g + ann(�=d) =

 

p

X

i=1

Z[G℄ g

i

!

+ ann(�=d)

where ann(�=d) is an ideal of Z[G℄, de�ned as follows:

ann(�=d) = fh 2 Z[G℄ j h � (�=d) = 0g

However, sine by hypothesis � gives a normal basis for L=Q, the same is true for �=d,
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hene ann(�=d) = 0, and we have the following equality of ideals of Z[G℄:

Z[G℄ g =

p

X

i=1

Z[G℄ g

i

Now, under the homomorphism � de�ned above, the element g

i

goes to



i

:=

p

X

j=1

a

ij

�

j�1

p

2 R

and therefore, under �, the prinipal ideal Z[G℄ g of Z[G℄ maps to the following integral

ideal of R:

I =

p

X

i=1

R 

i

With Theorem 1.5 in mind, we see that if O=sO has a free generator then I is a prinipal

ideal.

1.3. Conluding step

It is lear that if g is a generator of Z[G℄ g, then �(g) is a generator of I = �(Z[G℄ g).

However, if  is a generator of I, then it may happen that there is no generator of Z[G℄ g

in the set �

�1

(). This is seen to be equivalent to the following statement: the image of

the group of units Z[G℄

�

of Z[G℄ is ontained properly in the group of units �(Z[G℄)

�

of �(Z[G℄). Therefore we ontinue with a loser examination of the the unit groups. In

order do do this we introdue some more notation. Let � := �

p

� 1 be a generator for the

unique prime ideal of R lying above p. Sine p is totally rami�ed, we have a anonial

isomorphism

Z=pZ! R=(�) : k + pZ 7! k + (�) (1.2)

of residue rings. As immediately onsequenes we note:

j � k (mod �) () j � k (mod p) (1.3)

j, k 2 Z and for any P 2 Z[t℄

P (�

p

) � P (1) (mod �) (1.4)

sine �

p

� 1 (mod �).

Theorem 1.6.

�(Z[G℄

�

) = f� 2 R

�

j � � �1 (mod �)g

Proof. Let h = P (�) 2 Z[G℄

�

be a unit (P 2 Z[t℄). Then there is an Q(�) 2 Z[G℄

�

suh

that P (�)Q(�) = 1. Therefore we also have P (�

p

)Q(�

p

) = 1 and P (1)Q(1) = 1 whih

implies P (1) = �1 and � := �(h) = P (�

p

) 2 R

�

. Using (1.3) and (1.4) we see � � �1

(mod �).

Now, let us suppose � 2 R

�

, e 2 f�1g s.th.

� � e (mod �): (1.5)

� 2 R

�

implies the existen of P , Q 2 Z[t℄ s.th. � = P (�

p

) and P (�

p

)Q(�

p

) = 1. Using
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(1.4) we get P (1)Q(1) = 1 (mod �). Using (1.5) and (1.3) we see P (1) � e � Q(1)

(mod p). Let P (1) = e+ kp and Q(1) = e+ lp and de�ne P

0

:= P � k�

p

, Q

0

:= Q� l�

p

where �

p

:= (t

p

� 1)=(t � 1). Sine �

p

(1) = p we get P

0

(1) = e = Q

0

(1). Similarily,

�

p

(�

p

) = 0 implies P

0

(�

p

) = Q

0

(�

p

). Finally this yields

P

0

(�)Q

0

(�) = 1

as desired, therefore � is a unit in Z[G℄.2

Using irular units we get:

Theorem 1.7. �(Z[G℄

�

) is of �nite index in R

�

, more preisely: the irular units u

k

:=

(1��

k

p

)=(1��

p

), 1 � k � (p�1)=2 are a omplete set of representatives for R

�

=�(Z[G℄

�

).

The index is (p� 1)=2.

Proof. Sine u

k

= 1+�

p

+: : :+�

k�1

p

we get (using (1.4)) u

k

� k (mod �). We onlude

u

k

� u

j

(mod �)(Z[G℄

�

) if and only if k = j.

Let u 2 R

�

be an arbitrary unit. Then u � �k (mod �) with 1 � k � (p �

1)=2 by (1.2), therefore u � �u

k

(mod �), u=u

k

� �1 (mod �) implying u � �u

k

(mod �)(Z[G℄

�

) using theorem 1.6. 2

Using either standard algorithms (Pohst and Zassenhaus, 1989) or Buhmann's sub-

exponential lass group algorithm we an e�etively �nd an element  2 R suh that

I = R. Representing  as

P

p�1

j=1

a

j

�

j�1

p

we an ompute a representative g

0

in Z[G℄ of

the preimage of :

g

0

:=

p�1

X

j=1

a

j

�

j�1

2 Z[G℄

so that

� 2 (g

0

+Z[G℄ s) � (�=d) = g

0

� (�=d) +Z[G℄ s � (�=d) = g

0

� (�=d) +ZTr(�=d)

Sine we assumed the existene of a normal integral basis, theorem 1.5 guarantees the

existene of

~

� 2 L s.th. Z[G℄

~

�= O,

~

� = g � (�=d) and (�(g)) = I = (). Therefore �(g) =

�. Obviously, if g � (�=d) generates O, so does (eg) � (�=d) for any e 2 Z[G℄

�

. Therefore

theorem 1.7 implies that there is a unit u

k

in R and e 2 Z[G℄

�

s.th. �(eg) = u

k

.

If Tr(g

0

� (�=d)) 6� �1 (mod p) it is not possible to adjust g

0

in order to have Tr(�) =

�1. This means that we have seleted a wrong generator for our ideal. By the above

onsiderations, if we exhange  with u

k

we must get a generator after at most (p�1)=2

trials.

2. Example

To illustrate our algorithm, onsider the �eld L = Q(�), where � is a root of the

polynomial

m

�

(x) = x

5

� 1210x

3

+ 18755x

2

� 53240x� 145079

this �eld has disriminant 14641 = 11

4

. (Note that in this ase we know a normal integral

basis, �

11

+

�

�

11

is a generator sine L is the maximal real sub�eld of Q(�

11

).)
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First, we observe that the onjugates of � � 1 yield a normal basis for the �eld. We

ompute an integral basis for L, obtaining:

�

1

= 1

�

2

= (1 + �)=5

�

3

= (121 + 22�+ �

2

)=275

�

4

= (1001 + 253�+ 3�

2

+ �

3

)=1375

�

5

= (38841+ 8349�+ 176�

2

+ 44�

3

+ 1�

4

)=75625

Now we express the elements of the omputed integral basis as a linear ombination of

the elements of the normal basis and we get:

(�

1

; : : : ; �

5

) = (�� 1; �(�� 1); : : : ; �

4

(�� 1)) �

0

B

B

B

B

�

�1=5 3=25 �122=275 589=275 �144=275

�1=5 �2=25 �12=25 29=25 �229=275

�1=5 �2=25 �117=275 284=275 �189=275

�1=5 �2=25 �122=275 314=275 �189=275

�1=5 �2=25 �112=275 254=275 �184=275

1

C

C

C

C

A

We immediately see that we an take d = 275 as the denominator. Next, we ompute the

elements g

i

as g

1

= �(275=5)

P

4

i=0

�

i

; : : :. After applying � to the elements g

i

we get



1

= 0



2

= 55



3

= �10� 20�

5

� 5�

2

5

� 10�

3

5



4

= 335 + 65�

5

+ 30�

2

5

+ 60�

3

5



5

= 40� 45�

5

� 5�

2

5

� 5�

3

5

We �nd out (omputationally) that the ideal I = h

1

; 

2

; 

3

; 

4

; 

5

i is generated by 

3

.

As a preimage for 

3

we an take �

3

. Sine Tr(�

3

) = 11 � 1 (mod 5), we see that �

3

�2

has trae one, and it generates indeed a normal integral basis.

The above example took approximately 1.5 se on a SPARC 5 running SunOS 5.5.1

and KASH 1.9. In this partiular example about 60% of the time was spent to ompute

a generator for the ideal I.

If we apply our algorithm to di�erent yli number �elds of the same degree p the

exeution time an be redued to a large extent, sine the omputation of the lass group

of Q(�

p

) (needed for the omputation of a generator of I) must be performed only one.

In our example, if we ignore the time spent to ompute the lass group of Q(�

5

), the

omputation time redues to 0.3 se.

Next we onsider the family L

n

of �elds generated by a root �

n

of the polynomial

x

5

+ n

2

x

4

� (2n

3

+ 6n

2

+ 10n+ 10)x

3

+ (n

4

+ 5n

3

+ 11n

2

+ 15n+ 5)x

2

+ (n

3

+ 4n

2

+ 10n+ 10)x+ 1:

These �elds have been investigated by several people (Lehmer, 1988; Shoof and Wash-

ington, 1989; Darmon, 1991; Ga�al and Pohst, 1997). There are expliit formulas for the

ondutor, for a set of fundamental units and for an integral basis. We omputed inte-

gral normal bases for L

n

, 1 � n < 1000. The maximal ondutor was 1001006006011 =

11 � 71 � 2621 � 489011, obtained for n = 999. The maximal �(f) was 997008993010 for

n = 998. The omplete series was done in 2 minutes.
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In almost all ases (766 out of the 800 tamely rami�ed �elds) the generator for the

integral normal bases was of the shape a+ �

n

for some a 2 Z.

Our experiments show that for larger examples (p = 11; 13; 17) the running time of

the algorithm is dominated by the integral basis omputation.
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