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Let L be a cyclic number field of prime degree p. In this paper we study how to compute
efficiently a normal integral basis for L, if there is at least one, assuming that an integral
basis I' for L is known. We reduce our problem to the problem of finding the generator
of a principal ideal in the p-th cyclotomic field.

1. Introduction

Let us assume that L = Q[a] is a cyclic number field of prime degree p over Q, given by
the minimal polynomial m(z) of « over QQ, and without loss of generality let us assume
that a € O, the ring of algebraic integers of L.

Let us assume as well that the conjugates of a give a basis for L as a vector space over
Q. The problem of finding such an element « is discussed for example in (Schlickewei
and Stepanov, 1993)

Let us assume that an integral basis ay, ..., a, for O is known. We recall that such an
integral basis can be computed using the algorithms described in (Cohen, 1995; Pohst
and Zassenhaus, 1989).

Let G = (o) be the Galois group of L over Q. If one assumes the Extended Riemann
Hypothesis, then it is possible to compute ¢ in time polynomial in the size of m(z),
using the algorithm described in (Acciaro and Kliiners, 1999).

We say that an element 6 € L gives a normal integral basis if the ring O of integers
of L is equal to Y% , Z - ¢'(f). In this paper we study how to find efficiently such an
element 6, if there is at least one.

Assuming the knowledge of the discriminant of L, there is a well known criterion
for the existence of normal integral bases for cyclic fields of prime degree: L admits a
normal integral basis iff *V/d;, € Z is squarefree, i.e. the conductor of L is squarefree
(Narkiewicz, 1989, p. 175).

From a theoretical point of view, the existence of an normal integral basis is quite
explicit: Let f be the conductor of L. Since Z[(y] is integrally closed it is easy to see that
(s generates an integral normal basis. Now Trg(¢,)/r((f) generates an normal integral
basis for L (Narkiewicz, 1989, p. 174).

From a practical point of view, this is quite unsatisfacory since we need to work in
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Q(¢y) of degree ¢(f) which usually is large in comparison to [L : Q. Therefore the
computation of the relative trace will be quite difficult.

The algorithm presented here has the advantage of working only in L and Q(¢,) avoid-
ing the above mentioned problems. It turns out, that the running time of the algorithm
is essentially independend of the conductor. It has been implemented using the number
theory package KASH (Daberkow et al., 1997), developed in Berlin by Prof. M. Pohst
and his collaborators.

1.1. MODULES OVER GROUP RINGS

Let Z[G] denote the group ring of G over Z. Observe first that Z[G] is commutative,
and that

ZG12Z D Zo® - ®LoP =2 Zlx]/(zP - 1) (1.1)

(this follows from the fact, that § : Z[z] = Z[G] : v — o is surjective with kernel
generated by zP — 1)
The representation of elements of Z[G] as polynomials is essentially unique:

LEMMA 1.1. Let P € Z[z] then we have:
P(o) =0€ Z[G] iff P(1)=0 and P({;) =0

Proor. Let P € Z[z] such that P(o) = 0. From (1.1) we immediately get z? — 1|P(z)
and therefore P(1) = P((,) = 0.

On the other hand, suppose P(1) = P(¢,) = 0. Then z — 1|P(z) and 2P~ +--- 1| P(z)
and thus «? — 1|P(z). Initially, the divisibility is only valid in Q[z], but since the divisors
are monic, the divisibility in Z[z] follows too. [

From now on, let us assume that L is known to have a normal integral basis.
The next lemma gives us a necesary condition for an element § € O to generate a
normal integral basis.

LEMMA 1.2. Let us assume that L/Q is normal, and that 0 generates a normal integral
basis. Then | Tr(9)| = 1.

ProOOF. Let 0y,...,60, be the conjugates of # and ¢ = Tr(f). Then ¢t = 6, + ... + 6, and
1= (1/t)(61 + ... +6,). Since 6 generates a normal integral basis it follows that 1/t € Z
and therefore |t| = 1. U

Note that if 8 gives a normal integral basis, then —6 gives a normal integral basis as well,
hence without loss of generality we can assume that the sought element 6 has trace one.

The following lemma is simply another way to state the fact that there exists an
element § € O such that Z -0 +Z-0() + ...+ Z-o?71(0) = O.

LeEMMA 1.3. The field L possesses a normal integral basis over Z if and only if the ring
O is free of rank one as a Z|G] module.

Unfortunately, it is quite difficult to deal directly with the ring Z[G]. However, the ring
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Z|G] has a quotient which is a nice Dedekind domain, and we are going now to exhibit
it.

Let ¢, denote a primitive p-th root of unity, and let R denote the ring of integers of
the p-th cyclotomic field Q((,). Let s = 1+ o + --- + o1 € Z[G], and let (s) denote
the principal ideal generated by s in Z[G], that is s Z[G]. Then clearly Z[G]/(s) is a
commutative ring.

Let us define a ring homomorphism ¢ : Z[G] = R, by

p—1 p—1
¢ aic’) = ail} a; €L
=0 =0
Then we have the following theorem, which is fundamental for the rest of the paper.
THEOREM 1.4. Z[G]/(s) = R, under the homomorphism ¢.
PROOF. See (Curtis and Reiner, 1963, Lemma 74.4, p. 509) O
The following theorem is an easy consequence of Theorem 1.4.

THEOREM 1.5. If the field L possesses a normal integral basis, then the ring O/sO is
free of rank one over Z[G]/(s). Moreover, if 6 gives a normal integal basis for L, then
0 + sO is a free generator for O/sO as a Z|G]/(s) module.

Proor. This is a standard result from algebra, see for example (Lang, 1993, p. 136). O

The next thing to notice is that the ideal sO is just Z, since sO is just the set of
absolute traces from O, and it contains the element 1 by lemma 1.2. Therefore we are
led to the following

Problem: Find a free generator 8+ Z for O/Z as a Z[G]/(s) module.

In Section 1.2 we describe our algorithmic solution to this problem.

Let us assume now that we have found a free generator for O/Z as a Z[G]/(s) module.
We want to lift this generator to a free generator for O as a Z[G] module. Now, lemma
1.2 tells us that in order to find a representative 8 = 3 + ¢ of 8 + Z we have to require
that Tr(8 + ¢) = 1. This is easily done, since Tr(8 + ¢) = Tr(8) + pc. In particular, note
that it is necessary to have Tr(8) = £1 (mod p).

1.2. MODULES OVER DEDEKIND DOMAINS

In what follows we denote the action of an element ¢/ € G on an element o € L by
o’ - a rather than by o/ (a). Next, we extend this action by linearity on the whole of
Z|@], and we write g - a to denote the action of g € Z[G] on «a € L.

Let d be arbitrary such that

O C M =1Z[G]- (a)d)

e.g. one could take the discriminant of the set {a,o(a),...,0P?!(a)}, since it is a stan-
dard fact from number theory that O is contained in the free Z[G] module M generated
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by a/d. By hypothesis O has a normal integral basis generated by 6, and we can write
6=g-(a/d)
for some g € Z[G], so we can write
Z(Gl g - (a/d) = O C M =Z[G]- (a/d)

Our objective is to find g. Let {a1,...,ap} be a known integral basis for O. Since by
hypothesis

p
O:ZZ (67
i=1

(where the sum is direct) and L is normal, we must have
P
0=> Z[G]-
i=1

(where the last sum is not direct). In other words, the «;’s form a set of generators of
O as a Z[G] module. We want to compute a single free generator 6 from the given set

{a1,...,ap}.

Now, using linear algebra computations, we can express each element «; of the known
integral basis as a linear combination with integral coefficients a;; of the elements {a/d, o-
(a/d),...,aP"t-(a/d)}. In other words, for i = 1,...,p we can write

p
a; =y aij ol - (a/d)
j=1

that is
a; = g; - (a/d)
with

p
g; = Zaij 0'j71 € Z[G]
j=1

Therefore we can write
p
0= (Z Z[G) gz-) (a/d)
i=1

In particular, this implies that, if we let § = ¢ - (a/d) then we must have the following
equality of ideals of Z[G]:

Z[G] g + ann(a/d) = (ZZ[G] gi> + ann(a/d)
where ann(a/d) is an ideal of Z[G], defined as follows:
ann(a/d) = {h € Z[G] | h - (a/d) = 0}

However, since by hypothesis « gives a normal basis for L/Q, the same is true for a/d,
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hence ann(a/d) = 0, and we have the following equality of ideals of Z[G]:
P
ZIGlg =) ZGl g
i=1
Now, under the homomorphism ¢ defined above, the element g; goes to
p .
Yi = Zaij Clj)il ER

j=1

and therefore, under ¢, the principal ideal Z[G] g of Z[G] maps to the following integral

ideal of R:
p
I=) Ry
i=1

With Theorem 1.5 in mind, we see that if O/sO has a free generator then J is a principal
ideal.

1.3. CONCLUDING STEP

It is clear that if ¢ is a generator of Z[G] g, then ¢(g) is a generator of J = ¢(Z[G] g).
However, if «y is a generator of J, then it may happen that there is no generator of Z[G] g
in the set ¢»~1 (7). This is seen to be equivalent to the following statement: the image of
the group of units Z[G]* of Z[G] is contained properly in the group of units ¢(Z[G])*
of ¢(Z[G]). Therefore we continue with a closer examination of the the unit groups. In
order do do this we introduce some more notation. Let = := (;, — 1 be a generator for the
unique prime ideal of R lying above p. Since p is totally ramified, we have a canonical
isomorphism

Z[pZ— R[/(m) : k+ pZ — k + () (1.2)
of residue rings. As immediately consequences we note:
j=k (modw) <= j=k (modp) (1.3)
J, k € Z and for any P € Z[t]
P(¢) = P(1) (mod ) (1.4)

since (, =1 (mod ).

THEOREM 1.6.
H(Z[G]") ={e e R" |e==£1 (mod m)}

ProoF. Let h = P(0) € Z[G]* be a unit (P € Z[t]). Then there is an Q(o) € Z[G]* such
that P(0)Q(o) = 1. Therefore we also have P((,)Q((p) = 1 and P(1)Q(1) = 1 which
implies P(1) = £1 and € := ¢(h) = P({p) € R*. Using (1.3) and (1.4) we see ¢ = %1
(mod 7).

Now, let us suppose € € R*, e € {£1} s.th.

e=e (mod ). (1.5)
€ € R* implies the existenc of P, Q € Z[t] s.th. ¢ = P((p) and P({p)Q({p) = 1. Using



6 V. Acciaro and C. Fieker

(1.4) we get P(1)Q(1) =1 (mod 7). Using (1.5) and (1.3) we see P(1) = e = Q(1)
(mod p). Let P(1) = e+ kp and Q(1) = e+ Ip and define P' := P - k®,, Q' :=Q — 19,
where ®, := (t» — 1)/(t — 1). Since ®,(1) = p we get P'(1) = e = Q'(1). Similarily,
®,(¢,) = 0 implies P'((p) = Q'(¢p). Finally this yields

P/(0)Q'(0) =1

as desired, therefore € is a unit in Z[G]. U
Using circular units we get:

THEOREM 1.7. ¢(Z[G]*) is of finite index in R*, more precisely: the circular units uy, :=
(1=¢F)/(1=Cp), 1 < k < (p—1)/2 are a complete set of representatives for R* | $(Z[G]*).
The index is (p — 1)/2.

PROOF. Since up = 1+(,+...+¢ ! we get (using (1.4)) up =k (mod m). We conclude
up =u; (mod @)(Z[G]*) if and only if k = j.

Let u € R* be an arbitrary unit. Then v = £k (mod 7) with 1 < k& < (p —
1)/2 by (1.2), therefore u = +uy, (mod 7), u/ur, = £1 (mod 7) implying u = Fuyg
(mod ¢)(Z[G]*) using theorem 1.6. U

Using either standard algorithms (Pohst and Zassenhaus, 1989) or Buchmann’s sub-
exponential class group algorithm we can effectively find an element 7 € R such that
J = vR. Representing v as Z?;ll ajg;*l we can compute a representative ¢’ in Z[G] of
the preimage of :

p—1
g = Zajaj_l € Z[G)
j=1

so that
0 € (g +Z[G]s) (a/d) =g - (a/d) + Z[G] s - (a/d) = ¢ - (a/d) + Z Tr(cr/d)

Since we assumed the existence of a normal integral basis, theorem 1.5 guarantees the
existence of § € L s.th. Z[G]f = O, § = g- (a/d) and (¢(g)) = I = (7). Therefore ¢(g) =
~ve. Obviously, if g - (a/d) generates O, so does (eg) - (a/d) for any e € Z[G]*. Therefore
theorem 1.7 implies that there is a unit ug in R and e € Z[G]* s.th. ¢(eg) = yug.

If Tr(g' - (a/d)) # £1 (mod p) it is not possible to adjust ¢’ in order to have Tr(#) =
+1. This means that we have selected a wrong generator for our ideal. By the above
considerations, if we exchange v with yu; we must get a generator after at most (p—1)/2
trials.

2. Example

To illustrate our algorithm, consider the field L = Q(«), where « is a root of the
polynomial

me(z) = 2° —12102% + 1875527 — 53240z — 145079

this field has discriminant 14641 = 11*. (Note that in this case we know a normal integral
basis, (11 + (11 is a generator since L is the maximal real subfield of Q((11).)
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First, we observe that the conjugates of a — 1 yield a normal basis for the field. We
compute an integral basis for L, obtaining;:

ap = 1

a = (1+a)/5

a; = (121+22a+a?)/275

as = (1001 + 253+ 3a® + a?)/1375

as = (38841 + 8349a + 17602 + 44a® + 1a*) /75625

Now we express the elements of the computed integral basis as a linear combination of
the elements of the normal basis and we get:

(1,...,05) = (a—1lo(a—1),...,0%a—-1))-
-1/5 3/25 —122/275 589/275 —144/275
—1/5 —2/25 —12/25  29/25 —229/275
-1/5 —-2/25 —117/275 284/275 —189/275
—1/5 —2/25 —122/275 314/275 —189/275
—1/5 —2/25 —112/275 254/275 —184/275

We immediately see that we can take d = 275 as the denominator. Next, we compute the
elements g; as g1 = —(275/5) Z?:o ot,.... After applying ¢ to the elements g; we get

m = 0

Yo = 95

v = —10—20¢ — 5¢3 — 10¢
4 = 335465 + 30¢2 4 60¢3
v = 40 —45¢; —5¢5 — 5¢;

We find out (computationally) that the ideal Z = (y1,v2,7v3,74, 75} is generated by vs.
As a preimage for 3 we can take a3. Since Tr(az) =11 =1 (mod 5), we see that az —2
has trace one, and it generates indeed a normal integral basis.

The above example took approximately 1.5 sec on a SPARC 5 running SunOS 5.5.1
and KASH 1.9. In this particular example about 60% of the time was spent to compute
a generator for the ideal Z.

If we apply our algorithm to different cyclic number fields of the same degree p the
execution time can be reduced to a large extent, since the computation of the class group
of Q(¢p) (needed for the computation of a generator of 7) must be performed only once.
In our example, if we ignore the time spent to compute the class group of Q((s), the
computation time reduces to 0.3 sec.

Next we consider the family L,, of fields generated by a root p,, of the polynomial

>+ nPzt — (20 +6n® + 10n + 10)z®
+  (n*45n® + 110 4+ 15n + 5)x® + (n® + 4n® + 10n + 10)z + 1.
These fields have been investigated by several people (Lehmer, 1988; Schoof and Wash-
ington, 1989; Darmon, 1991; Gaél and Pohst, 1997). There are explicit formulas for the
conductor, for a set of fundamental units and for an integral basis. We computed inte-
gral normal bases for L,, 1 <n < 1000. The maximal conductor was 1001006006011 =

11-71 - 2621 - 489011, obtained for n = 999. The maximal ¢(f) was 997008993010 for
n = 998. The complete series was done in 2 minutes.
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In almost all cases (766 out of the 800 tamely ramified fields) the generator for the
integral normal bases was of the shape a + p,, for some a € Z.

Our experiments show that for larger examples (p = 11,13,17) the running time of
the algorithm is dominated by the integral basis computation.
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