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Let L be a 
y
li
 number �eld of prime degree p. In this paper we study how to 
ompute

eÆ
iently a normal integral basis for L, if there is at least one, assuming that an integral

basis � for L is known. We redu
e our problem to the problem of �nding the generator

of a prin
ipal ideal in the p-th 
y
lotomi
 �eld.

1. Introdu
tion

Let us assume that L = Q[�℄ is a 
y
li
 number �eld of prime degree p over Q, given by

the minimal polynomial m

�

(x) of � over Q, and without loss of generality let us assume

that � 2 O, the ring of algebrai
 integers of L.

Let us assume as well that the 
onjugates of � give a basis for L as a ve
tor spa
e over

Q. The problem of �nding su
h an element � is dis
ussed for example in (S
hli
kewei

and Stepanov, 1993)

Let us assume that an integral basis �

1

; : : : ; �

p

for O is known. We re
all that su
h an

integral basis 
an be 
omputed using the algorithms des
ribed in (Cohen, 1995; Pohst

and Zassenhaus, 1989).

Let G = h�i be the Galois group of L over Q. If one assumes the Extended Riemann

Hypothesis, then it is possible to 
ompute � in time polynomial in the size of m

�

(x),

using the algorithm des
ribed in (A

iaro and Kl�uners, 1999).

We say that an element � 2 L gives a normal integral basis if the ring O of integers

of L is equal to

P

p

i=1

Z � �

i

(�). In this paper we study how to �nd eÆ
iently su
h an

element �, if there is at least one.

Assuming the knowledge of the dis
riminant of L, there is a well known 
riterion

for the existen
e of normal integral bases for 
y
li
 �elds of prime degree: L admits a

normal integral basis i�

p�1

p

d

L

2 Z is squarefree, i.e. the 
ondu
tor of L is squarefree

(Narkiewi
z, 1989, p. 175).

From a theoreti
al point of view, the existen
e of an normal integral basis is quite

expli
it: Let f be the 
ondu
tor of L. Sin
e Z[�

f

℄ is integrally 
losed it is easy to see that

�

f

generates an integral normal basis. Now Tr

Q(�

f

)=L

(�

f

) generates an normal integral

basis for L (Narkiewi
z, 1989, p. 174).

From a pra
ti
al point of view, this is quite unsatisfa
ory sin
e we need to work in

0747{7171/90/000000 + 00 $03.00/0





 1999 A
ademi
 Press Limited



2 V. A

iaro and C. Fieker

Q(�

f

) of degree �(f) whi
h usually is large in 
omparison to [L : Q℄. Therefore the


omputation of the relative tra
e will be quite diÆ
ult.

The algorithm presented here has the advantage of working only in L and Q(�

p

) avoid-

ing the above mentioned problems. It turns out, that the running time of the algorithm

is essentially independend of the 
ondu
tor. It has been implemented using the number

theory pa
kage KASH (Daberkow et al., 1997), developed in Berlin by Prof. M. Pohst

and his 
ollaborators.

1.1. Modules over Group Rings

Let Z[G℄ denote the group ring of G over Z. Observe �rst that Z[G℄ is 
ommutative,

and that

Z[G℄

�

=

Z�Z�� � � � �Z�

p�1

�

=

Z[x℄=(x

p

� 1) (1.1)

(this follows from the fa
t, that Æ : Z[x℄ ! Z[G℄ : x 7! � is surje
tive with kernel

generated by x

p

� 1)

The representation of elements of Z[G℄ as polynomials is essentially unique:

Lemma 1.1. Let P 2 Z[x℄ then we have:

P (�) = 0 2 Z[G℄ i� P (1) = 0 and P (�

p

) = 0

Proof. Let P 2 Z[x℄ su
h that P (�) = 0. From (1.1) we immediately get x

p

� 1jP (x)

and therefore P (1) = P (�

p

) = 0.

On the other hand, suppose P (1) = P (�

p

) = 0. Then x� 1jP (x) and x

p�1

+ � � � 1jP (x)

and thus x

p

�1jP (x). Initially, the divisibility is only valid in Q[x℄, but sin
e the divisors

are moni
, the divisibility in Z[x℄ follows too. 2

From now on, let us assume that L is known to have a normal integral basis.

The next lemma gives us a ne
esary 
ondition for an element � 2 O to generate a

normal integral basis.

Lemma 1.2. Let us assume that L=Q is normal, and that � generates a normal integral

basis. Then jTr(�)j = 1.

Proof. Let �

1

; : : : ; �

p

be the 
onjugates of � and t = Tr(�). Then t = �

1

+ :::+ �

p

and

1 = (1=t)(�

1

+ :::+ �

p

). Sin
e � generates a normal integral basis it follows that 1=t 2 Z

and therefore jtj = 1. 2

Note that if � gives a normal integral basis, then �� gives a normal integral basis as well,

hen
e without loss of generality we 
an assume that the sought element � has tra
e one.

The following lemma is simply another way to state the fa
t that there exists an

element � 2 O su
h that Z � � +Z � �(�) + : : :+Z � �

p�1

(�) = O.

Lemma 1.3. The �eld L possesses a normal integral basis over Z if and only if the ring

O is free of rank one as a Z[G℄ module.

Unfortunately, it is quite diÆ
ult to deal dire
tly with the ring Z[G℄. However, the ring
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Z[G℄ has a quotient whi
h is a ni
e Dedekind domain, and we are going now to exhibit

it.

Let �

p

denote a primitive p-th root of unity, and let R denote the ring of integers of

the p-th 
y
lotomi
 �eld Q(�

p

). Let s = 1 + � + � � � + �

p�1

2 Z[G℄, and let (s) denote

the prin
ipal ideal generated by s in Z[G℄, that is s Z[G℄. Then 
learly Z[G℄=(s) is a


ommutative ring.

Let us de�ne a ring homomorphism � : Z[G℄! R, by

�(

p�1

X

i=0

a

i

�

i

) =

p�1

X

i=0

a

i

�

i

p

a

i

2 Z

Then we have the following theorem, whi
h is fundamental for the rest of the paper.

Theorem 1.4. Z[G℄=(s)

�

=

R, under the homomorphism �.

Proof. See (Curtis and Reiner, 1963, Lemma 74.4, p. 509) 2

The following theorem is an easy 
onsequen
e of Theorem 1.4.

Theorem 1.5. If the �eld L possesses a normal integral basis, then the ring O=sO is

free of rank one over Z[G℄=(s). Moreover, if � gives a normal integal basis for L, then

� + sO is a free generator for O=sO as a Z[G℄=(s) module.

Proof. This is a standard result from algebra, see for example (Lang, 1993, p. 136). 2

The next thing to noti
e is that the ideal sO is just Z, sin
e sO is just the set of

absolute tra
es from O, and it 
ontains the element 1 by lemma 1.2. Therefore we are

led to the following

Problem: Find a free generator � +Z for O=Z as a Z[G℄=(s) module.

In Se
tion 1.2 we des
ribe our algorithmi
 solution to this problem.

Let us assume now that we have found a free generator for O=Z as a Z[G℄=(s) module.

We want to lift this generator to a free generator for O as a Z[G℄ module. Now, lemma

1.2 tells us that in order to �nd a representative � = � + 
 of � + Z we have to require

that Tr(�+ 
) = �1. This is easily done, sin
e Tr(�+ 
) = Tr(�)+p
. In parti
ular, note

that it is ne
essary to have Tr(�) � �1 (mod p).

1.2. Modules over Dedekind Domains

In what follows we denote the a
tion of an element �

j

2 G on an element � 2 L by

�

j

� � rather than by �

j

(�). Next, we extend this a
tion by linearity on the whole of

Z[G℄, and we write g � � to denote the a
tion of g 2 Z[G℄ on � 2 L.

Let d be arbitrary su
h that

O �M = Z[G℄ � (�=d)

e.g. one 
ould take the dis
riminant of the set f�; �(�); : : : ; �

p�1

(�)g, sin
e it is a stan-

dard fa
t from number theory that O is 
ontained in the free Z[G℄ moduleM generated
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by �=d. By hypothesis O has a normal integral basis generated by �, and we 
an write

� = g � (�=d)

for some g 2 Z[G℄, so we 
an write

Z[G℄ g � (�=d) = O �M = Z[G℄ � (�=d)

Our obje
tive is to �nd g. Let f�

1

; : : : ; �

p

g be a known integral basis for O. Sin
e by

hypothesis

O =

p

X

i=1

Z �

i

(where the sum is dire
t) and L is normal, we must have

O =

p

X

i=1

Z[G℄ � �

i

(where the last sum is not dire
t). In other words, the �

i

's form a set of generators of

O as a Z[G℄ module. We want to 
ompute a single free generator � from the given set

f�

1

; : : : ; �

p

g.

Now, using linear algebra 
omputations, we 
an express ea
h element �

i

of the known

integral basis as a linear 
ombination with integral 
oeÆ
ients a

ij

of the elements f�=d; ��

(�=d); : : : ; �

p�1

� (�=d)g. In other words, for i = 1; : : : ; p we 
an write

�

i

=

p

X

j=1

a

ij

�

j�1

� (�=d)

that is

�

i

= g

i

� (�=d)

with

g

i

=

p

X

j=1

a

ij

�

j�1

2 Z[G℄

Therefore we 
an write

O =

 

p

X

i=1

Z[G℄ g

i

!

� (�=d)

In parti
ular, this implies that, if we let � = g � (�=d) then we must have the following

equality of ideals of Z[G℄:

Z[G℄ g + ann(�=d) =

 

p

X

i=1

Z[G℄ g

i

!

+ ann(�=d)

where ann(�=d) is an ideal of Z[G℄, de�ned as follows:

ann(�=d) = fh 2 Z[G℄ j h � (�=d) = 0g

However, sin
e by hypothesis � gives a normal basis for L=Q, the same is true for �=d,
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hen
e ann(�=d) = 0, and we have the following equality of ideals of Z[G℄:

Z[G℄ g =

p

X

i=1

Z[G℄ g

i

Now, under the homomorphism � de�ned above, the element g

i

goes to




i

:=

p

X

j=1

a

ij

�

j�1

p

2 R

and therefore, under �, the prin
ipal ideal Z[G℄ g of Z[G℄ maps to the following integral

ideal of R:

I =

p

X

i=1

R 


i

With Theorem 1.5 in mind, we see that if O=sO has a free generator then I is a prin
ipal

ideal.

1.3. Con
luding step

It is 
lear that if g is a generator of Z[G℄ g, then �(g) is a generator of I = �(Z[G℄ g).

However, if 
 is a generator of I, then it may happen that there is no generator of Z[G℄ g

in the set �

�1

(
). This is seen to be equivalent to the following statement: the image of

the group of units Z[G℄

�

of Z[G℄ is 
ontained properly in the group of units �(Z[G℄)

�

of �(Z[G℄). Therefore we 
ontinue with a 
loser examination of the the unit groups. In

order do do this we introdu
e some more notation. Let � := �

p

� 1 be a generator for the

unique prime ideal of R lying above p. Sin
e p is totally rami�ed, we have a 
anoni
al

isomorphism

Z=pZ! R=(�) : k + pZ 7! k + (�) (1.2)

of residue rings. As immediately 
onsequen
es we note:

j � k (mod �) () j � k (mod p) (1.3)

j, k 2 Z and for any P 2 Z[t℄

P (�

p

) � P (1) (mod �) (1.4)

sin
e �

p

� 1 (mod �).

Theorem 1.6.

�(Z[G℄

�

) = f� 2 R

�

j � � �1 (mod �)g

Proof. Let h = P (�) 2 Z[G℄

�

be a unit (P 2 Z[t℄). Then there is an Q(�) 2 Z[G℄

�

su
h

that P (�)Q(�) = 1. Therefore we also have P (�

p

)Q(�

p

) = 1 and P (1)Q(1) = 1 whi
h

implies P (1) = �1 and � := �(h) = P (�

p

) 2 R

�

. Using (1.3) and (1.4) we see � � �1

(mod �).

Now, let us suppose � 2 R

�

, e 2 f�1g s.th.

� � e (mod �): (1.5)

� 2 R

�

implies the existen
 of P , Q 2 Z[t℄ s.th. � = P (�

p

) and P (�

p

)Q(�

p

) = 1. Using
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(1.4) we get P (1)Q(1) = 1 (mod �). Using (1.5) and (1.3) we see P (1) � e � Q(1)

(mod p). Let P (1) = e+ kp and Q(1) = e+ lp and de�ne P

0

:= P � k�

p

, Q

0

:= Q� l�

p

where �

p

:= (t

p

� 1)=(t � 1). Sin
e �

p

(1) = p we get P

0

(1) = e = Q

0

(1). Similarily,

�

p

(�

p

) = 0 implies P

0

(�

p

) = Q

0

(�

p

). Finally this yields

P

0

(�)Q

0

(�) = 1

as desired, therefore � is a unit in Z[G℄.2

Using 
ir
ular units we get:

Theorem 1.7. �(Z[G℄

�

) is of �nite index in R

�

, more pre
isely: the 
ir
ular units u

k

:=

(1��

k

p

)=(1��

p

), 1 � k � (p�1)=2 are a 
omplete set of representatives for R

�

=�(Z[G℄

�

).

The index is (p� 1)=2.

Proof. Sin
e u

k

= 1+�

p

+: : :+�

k�1

p

we get (using (1.4)) u

k

� k (mod �). We 
on
lude

u

k

� u

j

(mod �)(Z[G℄

�

) if and only if k = j.

Let u 2 R

�

be an arbitrary unit. Then u � �k (mod �) with 1 � k � (p �

1)=2 by (1.2), therefore u � �u

k

(mod �), u=u

k

� �1 (mod �) implying u � �u

k

(mod �)(Z[G℄

�

) using theorem 1.6. 2

Using either standard algorithms (Pohst and Zassenhaus, 1989) or Bu
hmann's sub-

exponential 
lass group algorithm we 
an e�e
tively �nd an element 
 2 R su
h that

I = 
R. Representing 
 as

P

p�1

j=1

a

j

�

j�1

p

we 
an 
ompute a representative g

0

in Z[G℄ of

the preimage of 
:

g

0

:=

p�1

X

j=1

a

j

�

j�1

2 Z[G℄

so that

� 2 (g

0

+Z[G℄ s) � (�=d) = g

0

� (�=d) +Z[G℄ s � (�=d) = g

0

� (�=d) +ZTr(�=d)

Sin
e we assumed the existen
e of a normal integral basis, theorem 1.5 guarantees the

existen
e of

~

� 2 L s.th. Z[G℄

~

�= O,

~

� = g � (�=d) and (�(g)) = I = (
). Therefore �(g) =


�. Obviously, if g � (�=d) generates O, so does (eg) � (�=d) for any e 2 Z[G℄

�

. Therefore

theorem 1.7 implies that there is a unit u

k

in R and e 2 Z[G℄

�

s.th. �(eg) = 
u

k

.

If Tr(g

0

� (�=d)) 6� �1 (mod p) it is not possible to adjust g

0

in order to have Tr(�) =

�1. This means that we have sele
ted a wrong generator for our ideal. By the above


onsiderations, if we ex
hange 
 with 
u

k

we must get a generator after at most (p�1)=2

trials.

2. Example

To illustrate our algorithm, 
onsider the �eld L = Q(�), where � is a root of the

polynomial

m

�

(x) = x

5

� 1210x

3

+ 18755x

2

� 53240x� 145079

this �eld has dis
riminant 14641 = 11

4

. (Note that in this 
ase we know a normal integral

basis, �

11

+

�

�

11

is a generator sin
e L is the maximal real sub�eld of Q(�

11

).)
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First, we observe that the 
onjugates of � � 1 yield a normal basis for the �eld. We


ompute an integral basis for L, obtaining:

�

1

= 1

�

2

= (1 + �)=5

�

3

= (121 + 22�+ �

2

)=275

�

4

= (1001 + 253�+ 3�

2

+ �

3

)=1375

�

5

= (38841+ 8349�+ 176�

2

+ 44�

3

+ 1�

4

)=75625

Now we express the elements of the 
omputed integral basis as a linear 
ombination of

the elements of the normal basis and we get:

(�

1

; : : : ; �

5

) = (�� 1; �(�� 1); : : : ; �

4

(�� 1)) �

0

B

B

B

B

�

�1=5 3=25 �122=275 589=275 �144=275

�1=5 �2=25 �12=25 29=25 �229=275

�1=5 �2=25 �117=275 284=275 �189=275

�1=5 �2=25 �122=275 314=275 �189=275

�1=5 �2=25 �112=275 254=275 �184=275

1

C

C

C

C

A

We immediately see that we 
an take d = 275 as the denominator. Next, we 
ompute the

elements g

i

as g

1

= �(275=5)

P

4

i=0

�

i

; : : :. After applying � to the elements g

i

we get




1

= 0




2

= 55




3

= �10� 20�

5

� 5�

2

5

� 10�

3

5




4

= 335 + 65�

5

+ 30�

2

5

+ 60�

3

5




5

= 40� 45�

5

� 5�

2

5

� 5�

3

5

We �nd out (
omputationally) that the ideal I = h


1

; 


2

; 


3

; 


4

; 


5

i is generated by 


3

.

As a preimage for 


3

we 
an take �

3

. Sin
e Tr(�

3

) = 11 � 1 (mod 5), we see that �

3

�2

has tra
e one, and it generates indeed a normal integral basis.

The above example took approximately 1.5 se
 on a SPARC 5 running SunOS 5.5.1

and KASH 1.9. In this parti
ular example about 60% of the time was spent to 
ompute

a generator for the ideal I.

If we apply our algorithm to di�erent 
y
li
 number �elds of the same degree p the

exe
ution time 
an be redu
ed to a large extent, sin
e the 
omputation of the 
lass group

of Q(�

p

) (needed for the 
omputation of a generator of I) must be performed only on
e.

In our example, if we ignore the time spent to 
ompute the 
lass group of Q(�

5

), the


omputation time redu
es to 0.3 se
.

Next we 
onsider the family L

n

of �elds generated by a root �

n

of the polynomial

x

5

+ n

2

x

4

� (2n

3

+ 6n

2

+ 10n+ 10)x

3

+ (n

4

+ 5n

3

+ 11n

2

+ 15n+ 5)x

2

+ (n

3

+ 4n

2

+ 10n+ 10)x+ 1:

These �elds have been investigated by several people (Lehmer, 1988; S
hoof and Wash-

ington, 1989; Darmon, 1991; Ga�al and Pohst, 1997). There are expli
it formulas for the


ondu
tor, for a set of fundamental units and for an integral basis. We 
omputed inte-

gral normal bases for L

n

, 1 � n < 1000. The maximal 
ondu
tor was 1001006006011 =

11 � 71 � 2621 � 489011, obtained for n = 999. The maximal �(f) was 997008993010 for

n = 998. The 
omplete series was done in 2 minutes.
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In almost all 
ases (766 out of the 800 tamely rami�ed �elds) the generator for the

integral normal bases was of the shape a+ �

n

for some a 2 Z.

Our experiments show that for larger examples (p = 11; 13; 17) the running time of

the algorithm is dominated by the integral basis 
omputation.
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