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The purpose of this article is to determine all sub�elds Q(�) of �xed degree of a given

algebraic number �eld Q(�). It is convenient to describe each sub�eld by a pair (h; g) of

polynomials in Q[t] resp. Z[t] such that g is the minimal polynomial of � = h(�). The

computations are done in unrami�ed p-adic extensions and use information concerning

subgroups of the Galois group of the normal closure of Q(�) obtained from the van der

Waerden criterion.

1. Introduction

Let K = Q(�) be an algebraic number �eld of degree n which is given by a zero � of

the corresponding minimal polynomial f 2 Z[t]. In this article a method for determining

all sub�elds L = Q(�) of K of �xed degree m over Q is developed. We describe each

sub�eld L by the minimal polynomial g of � and and the embedding of � into K, which

is given by a polynomial h 2 Q[t] with h(�) = �.

Lemma 1.1. 1 Each sub�eld L of K has a representation by a pair (h; g) with g(h) �

0 mod fZ[t].

2 A pair (h; g) with g(h) � 0 mod fZ[t] describes a sub�eld L of K.

Note that the coe�cients of the embedding polynomial h are not necessarily integral

because the equation order Z[�] is in general not a maximal order. W.l.o.g. we assume

that the degree of h is smaller than n, because h can be replaced by its remainder modulo

f . The lemma is used to check if a pair (h; g) presents a sub�eld L ofK. Such a sub�eld L

is represented in the form Q[t]=g(t)Q [t]; hence isomorphic �elds are not distinguishable.

Example 1.2. We determine all sub�elds L of K = Q(i

6

p

108) of degree 3. There are

three sub�elds with characterizing pairs (�t

2

; t

3

�108); (

1

12

t

5

+

1

2

t

2

; t

3

�108) and (�

1

12

t

5

+

1

2

t

2

; t

3

�108). In all cases the minimal polynomial of � is the same; however, we are able

to distinguish the generated sub�elds by their embedding polynomials.

There are at least six other algorithms [Casperson, Ford, McKay (1995), Cohen, Diaz

y Diaz (1991), Dixon (1990), Hulpke (1995), Landau, Miller (1985), Lazard, Valibouze
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(1993)] for calculating sub�elds. In this article we generalize and improve the methods of

Dixon (1990). The generating polynomials are constructed by factorizations over �nite

�elds and Hensel lifting over p-adic �elds. Three other methods [Hulpke (1995), Landau,

Miller (1985), Lazard, Valibouze (1993)] need factorizations of polynomials over number

�elds, respectively factorizations of polynomials over the rational integers of much higher

degree than the degree of the given �eld. These factorizations are very expensive. The

method presented in Casperson, Ford, McKay (1995) needs hard numerical computations

and lattice reduction algorithms. Finally, the algorithm in Cohen, Diaz y Diaz (1991)

computes sub�elds, too. But it is not guaranteed that all sub�elds will be found. A

comparison of running times is given in section 6.

2. Blocks of Imprimitivity and the Relation to Sub�elds

Let G = Gal(f) be the Galois group of a splitting �eld N of f and 
 = f� =

�

1

; : : : ; �

n

g be the set of zeros of f in N . Considered as a permutation group of the set

of roots, G operates transitively on 
 because f is irreducible.

Definition 2.1. 1 ; 6= � � 
 is called a block of imprimitivity (block), if �

�

\

� 2 f;;�g for all � 2 G.

2 � = f�

i

g (1 � i � n) and � = 
 are called trivial blocks. G is called imprimi-

tive if there exists a non-trivial block. Otherwise G is called primitive.

3 Blocks �

1

; : : : ;�

m

with �

i

6= �

j

(1 � i < j � m) are called a (complete) block

system, if the set f�

1

; : : : ;�

m

g remains invariant under G.

If � is a block, it is easy to see that �

�

(� 2 G) is also a block. Note that each block lies

in exactly one complete block system �

1

; : : : ;�

m

with �

i

= �

�

i

for a suitable element

�

i

2 G.

The connection between blocks and sub�elds is based on the following two theorems.

Theorem 2.2. (Fundamental Theorem of Galois Theory)

Let M = Q(�

1

; : : : ; �

n

) be the splitting �eld of f and G = Gal(M=Q).

1 Every intermediate �eld Q � L = Q(�) � M corresponds to a subgroup H of G

and vice versa.

2 L is a Galois extension if and only if H is a normal subgroup of G.

3 The sub�elds L of K correspond to the groups H � G containing G

�

, the �x group

of �.

Theorem 2.3. The lattice of groups between G

�

and G is isomorphic to the lattice of

blocks of G which contain �.

The proof of theorem 2.3 can be found in Wielandt (1964).

Remark 2.4. Let L

1

and L

2

be two sub�elds of K with corresponding blocks B

1

and B

2

containing �. Then B = B

1

\ B

2

is a block which contains � as well. It corresponds to

a sub�eld L = L

1

L

2

of K. Furthermore L

1

is a sub�eld of L

2

if and only if B

1

� B

2

.
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As each block is part of a complete block system, by the preceding theorems there is a

connection between complete block systems and sub�elds. Let �

1

; : : : ;�

m

be a complete

block system, H = G

�

1

and L be the sub�eld �xed by H . De�ne

�

i

:=

Y


2�

i


 (i = 1; : : : ;m):

It is easy to see that �

1

2 L and �

i

(i = 2; : : : ;m) are conjugates of �

1

. The polynomial

g(t) :=

m

Y

i=1

(t� �

i

)

is the characteristic polynomial of �

1

in L and is of the form: g(t) = ~g(t)

j

(j 2 N; ~g 2 Z[t]

monic and irreducible). Now there are two possibilities. In the �rst case the polynomial

g is irreducible, hence generates the sub�eld L. In the other case the �

i

are not pairwise

distinct, requiring that we search for another generating polynomial of K such that the

�

i

become distinct. To do this, f(t) is replaced by f(t� k) (k 2 Z). In Dixon (1990) it is

proved that at most

1

2

mn substitutions of this type do not yield irreducible polynomials.

The problem of calculating a generating polynomial of the sub�eld L is reduced to the

determination of the corresponding block system �

1

; : : : ;�

m

. Of course, this reduction

is purely theoretical so far, since neither the Galois group G nor its operation on � are

known.

For practical applications Dixon (1990) suggested to make use of van der Waerden's

criterion (1971).

Theorem 2.5. (van der Waerden's Criterion)

Let R be a UFD, p a prime ideal in R,

�

R := R=p its residue class ring, f 2 R[t] and

�

f 2

�

R[t] with f �

�

f mod p. If

�

f is square{free, it follows that

�

G = Gal(

�

f) is isomorphic

to a subgroup of G = Gal(f):

The van der Waerden criterion allows us to determine cyclic subgroups of G which

are generated by a permutation � 2 G. Let � = �

1

� � ��

u

be the decomposition of �

into disjoint cycles and n

i

= j�

i

j the number of zeros permuted by �

i

(1 � i � u). We

say that � is of cycle type [n

1

; : : : ; n

u

] and w.l.o.g. we can assume n

1

� : : : � n

u

.

In our situation we choose a prime p - disc(f) to obtain a congruence factorization

f � f

1

� : : : � f

u

mod pZ[t]. It follows that n

i

(i = 1; : : : ; u) coincides with the degree of

the polynomial f

i

. The cycles �

i

permute the roots of f

i

.

Example 2.6. Let f(t) = t

4

+ 2 be a generating polynomial of K and G = Gal(f).

1 f(t) � t

4

mod 2.

2 f(t) � (t+ 2)(t+ 1)(t

2

+ 1) mod 3.

3 f(t) � t

4

+ 2 mod 5.

4 f(t) � (t

2

+ 6t+ 4)(t

2

+ t+ 4) mod 7.

Let p denote the modulus. In the �rst case p divides the discriminant and the van der

Waerden criterion is of no use. In the other cases we get cycles of cycle type [1; 1; 2],

[4] and [2; 2]. In all of these cases the roots can only be identi�ed modulo p in a suitable

�nite �eld.
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Definition 2.7. Let � 2 G be as above with j�

i

j = n

i

(1 � i � u) and H = h�i. A subset

A of 
 consisting of d elements is called a potential block of size d, if A

�

j

\A 2 f;; Ag

for 1 � j � jH j. A system A

1

; : : : ; A

m

of potential blocks of size d is called a potential

block system if the union of that system is 
, any two distinct elements of that system

are disjoint, and A

�

j

i

(1 � j � jH j; 1 � i � m) also belongs to that system.

Remark 2.8. The de�nitions potential block and potential block system depend on H.

It is easy to see that all blocks are also potential blocks and all block systems are also

potential block systems.

Theorem 2.9. Let H = h�i be a subgroup of G, A be a potential block and k be the

smallest positive integer with A

�

k

= A. If a cycle �

l

of length n

l

contains an element of

A, then k divides n

l

and �

l

contains exactly

n

l

k

elements of A.

Proof. Since A is a potential block there is some positive integer k for which

A

�

j

\ A = ; for 1 � j < k and A

�

k

= A:

Let � be an element which is contained in �

l

and in A. It follows that all elements of the

form �

�

ck

(c 2 N) are contained in A, but all elements of the form �

�

ck+j

(c 2 N; 1 � j <

k) are not contained in A. Because �

�

n

l

= �, it follows that k divides n

l

and �

l

contains

exactly

n

l

k

elements of A. �

We call the integer k in the theorem above the exponent of the potential block A.

Theorem 2.10. Let H = h�i be a subgroup of G and A

1

; : : : ; A

m

be a potential block

system with exponents k

1

; : : : ; k

m

. If A

i

and A

j

contain elements of the same cycle, it

follows that k

i

= k

j

. In this case A

i

contains an element of the cycle �

�

(1 � � � u) if

and only if A

j

contains an element of �

�

.

Proof. By assumption there exists a smallest positive integer c with A

�

c

i

\ A

j

6= ;.

Since A

�

c

i

is a potential block which belongs to the potential block system A

1

; : : : ; A

m

,

it follows that A

�

c

i

= A

j

. �

The last two theorems are important for calculating potential block systems. We con-

struct systems of subsets A

1

; : : : ; A

m

of 
 and integers k

1

; : : : ; k

m

with the following

properties:

1 jA

i

j = d 2 N for 1 � i � m.

2 If A

i

contains an element of a cycle �

l

, then A

i

contains exactly

n

l

k

i

elements of �

l

.

3

S

1�i�m

A

i

= 
.

4 A

i

\ A

j

= ; for i 6= j.

5 IfA

i

andA

j

contain elements of the same cycle, it follows that k

i

= k

j

andA

i

= A

�

�

j

for a suitable 1 � � � k

i

.

We note that a system of subsets A

1

; : : : ; A

m

of 
 with the above properties is a potential

block system.
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Algorithm 2.11. (Computation of potential block systems)

Input: A generating polynomial f of K, a size d and a prime p - disc(f).

Output: A list of all potential block systems of blocks of size d.

Step 1: Compute the congruence factorization f(t) � f

1

� : : : � f

r

mod pZ[t].

Step 2: Set n

i

= deg(f

i

) and compute a root �

i

of f

i

in a suitable extension of

F

p

(1 � i � r).

Step 3: Set the cycle �

i

= (�

i

�

p

i

: : : �

p

n

i

�1

i

) (1 � i � r).

Step 4: Set Z = f�

1

; : : : ; �

r

g and call CalcBlock(Z; d; ;).

Subalgorithm 2.12. (CalcBlock)

Input: A set Z consisting of cycles, a size d and a set Y .

Output: A list of potential block systems of size d.

Step 1: Set k = 1 ; r = jZj and let n

1

; : : : ; n

r

be the lengths of the cycles contained

in Z.

Step 2: Determine all subsets B of f2; : : : ; rg satisfying dk � n

1

=

P

b2B

n

b

and

k j n

b

for all b 2 B. For each such subset B do:

(i) Set Z

0

= f�

1

g and add the cycles belonging to B to Z

0

.

(ii) Add Z

0

to Y .

(iii) If Z = Z

0

call PrintBlockSystem(Y

0

; d)

else call CalcBlock(Z n Z

0

; d; Y )

(iv) Remove Z

0

from Y .

Step 3: For k = n

1

terminate. Else increase k to the smallest divisor of n

1

bigger

than k and go to Step 2.

Subalgorithm 2.13. (PrintBlockSystem)

Input: A set Y consisting of sets of cycles and a block size d.

Output: A list of potential block systems of size d belonging to Y .

Step 1: Set � = ;, r = jY j and let Y

1

; : : : ; Y

r

be the elements of Y .

Step 2: For i = 1; : : : ; r do

(i) Set s

i

= jY

i

j and let �

1

; : : : ; �

s

i

be the elements of Y

i

.

(ii) Set n

j

= j�

j

j (1 � j � s

i

) and k

i

=

1

d

P

s

i

j=1

n

j

2 N.

(iii) Let �

j

be a �xed element of the cycle �

j

(1 � j � s

i

).

(iv) Set �

1

; : : : ;�

k

i

= ;.

(v) Add �

�

l

j

j

to �

lmodk

i

(1 � j � r; 1 � l � n

j

; l mod k

i

2 f1; : : : ; k

i

g).

(vi) Add �

1

; : : : ;�

k

i

to �.

Step 3: Let �

i;1

; : : : ; �

i;s

i

be the elements of Y

i

, (1 � i � r).

Step 4: Set M = f

Q

r

i=1

Q

s

i

j=2

�

e

i;j

i;j

j 1 � i � r; 2 � j � s

i

; 0 � e

i;j

< k

i

g.

Step 5: For each � 2M print the potential block system ��.
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Example 2.14. Let � 2 G be of cycle decomposition � = �

1

�

2

= (�

1

�

2

)(�

3

�

4

) of

lengths n

i

= 2 (i = 1; 2). For k = 1 the algorithm produces the potential block system

f�

1

; �

2

g; f�

3

; �

4

g, and for k = 2 it produces two more potential block systems, namely

f�

1

; �

3

g; f�

2

; �

4

g and f�

1

; �

4

g; f�

2

; �

3

g.

Example 2.15. Let K = Q(i

6

p

108) and f(t) = t

6

+ 108. The polynomial f(t) has the

following congruence factorizations:

f(t) � (t

2

+ 2)(t

2

+ t+ 2)(t

2

+ 4t+ 2) mod 5

f(t) � (t

3

+ 2)(t

3

+ 5) mod 7

f(t) � (t+ 3)(t+ 13)(t+ 15)(t+ 16)(t+ 18)(t+ 28) mod 31:

From this information, we know that G contains elements of cycle types [2; 2; 2]; [3; 3]; and

[1; 1; 1; 1; 1; 1]. Choosing p = 7 and � = (�

1

; �

2

; �

3

)(�

4

; �

5

; �

6

), we search for potential

blocks of size 2. For k = 1 there is no subset B satisfying the condition in Step 3 of the

algorithm, so k is set to 3. Combining one zero of �

1

with one zero of �

2

, we get the con-

jugated potential blocks by the condition A

i+1

= A

�

i

1

(i = 1; 2). The algorithm prints the

following potential block systems: ff�

1

; �

4

gf�

2

; �

5

gf�

3

; �

6

gg ff�

1

; �

5

gf�

2

; �

6

gf�

3

; �

4

gg

ff�

1

; �

6

gf�

2

; �

4

gf�

3

; �

5

gg.

3. Computation of generating polynomials

In this section we construct a generating polynomial of the sub�eld L using the in-

formation we get from a potential block system. First we must determine whether the

potential block system is a block system. In order to accomplish this, it becomes nec-

essary to work in a suitable �nite �eld F

q

, in which the zeros of f modulo p can be

identi�ed. It is known that exactly one unrami�ed extension F of the p-adic �eld Q

p

with residue class �eld F

q

exists. In such a p-adic �eld we are able to identify the zeros

of f .

Let A

1

; : : : ; A

m

be a block system of G and �

i

:=

Q

�2A

i

� 2 N . The problem is to

determine the polynomial

g(t) =

m

Y

i=1

(t� �

i

) 2 Z[t]:

Now let

~

f be the canonical embedding of f in Z

p

and ~�

1

; : : : ; ~�

n

be the zeros of

~

f in a

suitable extension E of Q

p

. Set

~

�

i

:=

Q

~�2A

i

~� 2 E and calculate the polynomial

~g(t) =

m

Y

i=1

(t�

~

�

i

) 2 E [t]:

Theorem 3.1. Let A

1

; : : : ; A

m

be a complete block system and g and ~g be as above.

Then ~g 2 Z

p

[t] and if g is embedded into Z

p

[t] in a canonical way, it follows that g = ~g.

Proof. Let N = Q(�

1

; : : : ; �

n

) be the splitting �eld of f and p be a prime ideal lying

over p. De�ne � : N ! N

p

to be the canonical embedding. From this it is clear that

�(g) = ~g. Since Z� Z

p

and E � N

p

, the theorem is proved. �

If we only assume that A

1

; : : : ; A

m

is a potential block system it can be proved that
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~g 2 Z

p

[t]. In practice we are able to do arithmetic in p-adic �elds only modulo p

k

(k 2 N)

up to some exponent, where p is the prime ideal of the given p-adic �eld.

Theorem 3.2. Let g; ~g;

~

�

i

(1 � i � m); E be de�ned as above, k 2 N and p the prime

ideal of E. Assume

�

�

i

�

~

�

i

mod p

k

(1 � i � m) and de�ne �g(t) =

Q

m

i=1

(t�

�

�

i

). Then it

follows that �g � ~g mod p

k

, hence �g � g mod p

k

.

Proof. Because of the de�nition of �g, we have �g � ~g mod p

k

. W.l.o.g. we can choose

�g 2 Z

p

[t] and obtain �g � ~g mod p

k

. �

The next algorithm requires a bound M for the coe�cients of the generating polyno-

mial g, which is provided by the following lemma.

Lemma 3.3. Let f; g be as above and assume that g generates a sub�eld L of K. If

g(t) =

P

m

i=1

b

i

t

i

and B =

Q

n

i=1

max(1; j�

i

j), then the following inequality holds:

jb

i

j �

�

m� 1

i� 1

�

B +

�

m� 1

j

�

:

Proof. This is an immediate consequence of lemma 3.5.2 in Cohen (1993). �

Algorithm 3.4. (Computation of candidates for sub�elds)

Input: A generating polynomial f 2 Z[t] for K of degree n and a prime number p

with a potential block system A

1

; : : : ; A

m

. A bound M for the coe�cients of

the generating polynomial g of the potential sub�eld L.

Output: A generating polynomial g for a potential sub�eld L of degree m.

Step 1: Determine the exponents k

i

of A

i

for 1 � i � m from the congruence factor-

ization of f modulo pZ[t].

Step 2: For 1 � i � m calculate the cycles and corresponding polynomials which

contain elements in A

i

, factorize these polynomials in an extension of degree

k

i

of F

p

and determine the zeros belonging to A

i

.

Step 3: Factorize f in an extension of degree k = lcm(k

1

; :::; k

m

) of F

p

.

Step 4: Lift those factors to a su�cient precision (> 2M) by Hensel's method.

Step 5: Compute p{adic approximations �

i

of the product of the zeros belonging to

block A

i

.

Step 6: Compute g(t) =

Q

m

i=1

(t� �

i

).

If the coe�cients of g are bigger than the bound M , it was previously shown that

A

1

; : : : ; A

m

is a potential but not a complete block system. If the polynomial g has

multiple roots, a suitable Tschirnhausen transformation must be applied to f and the

algorithm (with new bound M) is repeated.

We remark that Step 4 is not done for each potential block system. We can store the

Hensel lifting and use it again for further potential block systems.
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Example 3.5. Let K = Q(i

6

p

108), f(t) = t

6

+ 108 and p = 7. In example 2.15 three

potential block systems were computed. The exponents of all blocks are 3. We generate

a p-adic �eld E=Q

7

by a zero 
 of the polynomial !(t) = t

3

+ 6t

2

+ 4. Let p be the

prime ideal in E. We get the following congruence factorization (with [a; b; c] representing

a+ b
 + c


2

2 Z

p

+Z

p


 +Z

p




2

= o

E

):

f(t) � (t� [204; 408; 51])(t� [�101;�202; 575])(t� [�103;�206;�626])

(t� [101; 202;�575])(t� [103; 206; 626])(t� [�204;�408;�51]) mod p

4

:

The factors are sorted according to the Frobenius automorphism. In the notation of ex-

ample 2.15 we obtain:

�

1

= [204; 408; 51]; �

2

= [�101;�202; 575]; �

3

= [�103;�206;�626];

�

4

= [101; 202;�575]; �

5

= [103; 206; 626]; �

6

= [�204;�408;�51]:

It is now possible to compute �

1

; �

2

; �

3

and the polynomial g(t) =

Q

3

i=1

(t � �

i

) for each

potential block system. In all cases we get g(t) = t

3

� 108 mod p

4

. Then embeddings need

to be computed in order to determine whether these polynomials generate sub�elds of K.

4. Embedding of Sub�elds

The embedding of the computed potential sub�elds is a modi�cation of Dixon's al-

gorithm (1990). The advantage of our method is that we do not have to try several

partitions of roots because we work with a potential block system.

Algorithm 4.1. (Embedding of potential sub�elds)

Input: A generating polynomial f 2 Z[t] for K of degree n, and a polynomial g

generated by Algorithm 3.4 with corresponding prime number p and potential

block system A

1

; : : : ; A

m

.

Output: A polynomial h 2 Q[t] satisfying g(h) � 0 mod fZ[t] if g is a generating

polynomial of a sub�eld of K, or the result that A

1

; : : : ; A

m

is not a block

system.

Step 1: Calculate h

0

2 Z[t] satisfying h

0

(�

j

) � �

i

mod p for all �

j

2 A

i

(1 � i �

m).

Step 2: Lift h

0

to a su�cient precision h

k

modulo p

2

k

by Newton's method.

Step 3: Retrieve from h

k

a polynomial h 2 Q(t). If f divides g(h) print h, else print

\g does not generate a sub�eld of K".

A bound for Step 2 can be found in Dixon (1990). It seems that these bounds usually

grossly overestimate the size of the numerators and denominators of the coe�cients

of h. One possibility is to check if the condition g(h) � 0 mod fZ[t] is ful�lled after

each iteration of the Newton lifting, but the calculation of g(h) is expensive. Another

possibility is to calculate only h 2 Q[t] after each iteration and compare this with the h

calculated one iteration before. We only check g(h) � 0 mod fZ[t] if h remains invariant.

Example 4.2. We conclude examples 2.15,3.5 using the methods described in Dixon
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(1990) to compute h mod p. In the �rst case we get h(t) � 4t

5

+ 4t

2

mod 7 and by the

Newton lifting method,

h(t) � 1012392034723593925779857601 � t

5

+ 552213837121960323152649601 � t

2

mod 7

32

:

Retrieving the coe�cients in Q, we get h(t) = �

1

12

t

5

+

1

2

t

2

. In the two other cases:

h(t) � 1012392034723593925779857601 � t

5

+ 552213837121960323152649601 � t

2

mod 7

32

;

whence h(t) =

1

12

� t

5

+

1

2

� t

2

, furthermore,

h(t) � 1104427674243920646305299200 � t

2

mod 7

32

;

from which h(t) = �t

2

follows.

The condition f j g(h) is ful�lled in all cases.

5. The Algorithm

Algorithm 5.1. (Calculation of sub�elds)

Input: A generating polynomial f 2 Z[t] for K of degree n.

Output: A list of characterizing pairs (h; g) of all non-trivial sub�elds L of K. For all

d j n (d 6= 1; d 6= n) do

Step 1: Choose several primes p - disc(f) and use algorithm 2.11 to compute a list of

potential block systems.

Step 2: Choose a prime p and the corresponding list of potential block systems which

appear to be most suitable.

Step 3: For all potential block systems of that list use algorithm 3.4 to compute po-

tential generating polynomials.

Step 4: For all those potential generating polynomials use algorithm 4.1 to compute

an embedding or decide that the potential block system was not a complete

block system.

It is di�cult to say which prime is the best one in Step 2. On the one hand we want

to choose a prime for which the number of potential block systems is small, on the other

hand it is faster to do arithmetic in p-adic �elds of small degree. There are two ways of

detecting potential block systems which are not complete block systems. The �rst one is

that the coe�cients of g are bigger than the bound M . The other one is very expensive

because we try in Step 4 to compute an embedding which does not exist. In most cases

it is better to choose a larger bound (for example M

2

or M

4

) in Step 4 of Algorithm 3.4

because there is a better chance of �nding that the coe�cients of g are too big.

The algorithm to compute generating polynomials of sub�elds is a generalization of

the method presented in Dixon (1990). Dixons algorithm can only work with potential

blocks of exponent 1. To compute all sub�elds of given degree m the algorithm has to

�nd a prime p such that all potential blocks which contain � have exponent 1. In all

algebraic number �elds there exist primes which correspond to permutations of cycle
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Table 1. Examples

No Polynomial Time

1 t

6

+ 108 1.1 sec

2 t

8

� 12t

6

+ 23t

4

� 12t

2

+ 1 4.0 sec

3 t

8

� 10t

4

+ 1 1.5 sec

4 t

8

+ 4t

6

+ 10t

4

+ 12t

2

+ 7 1.8 sec

5 t

9

� 18t

8

+ 117t

7

� 348t

6

+ 396t

5

+ 288t

4

+ 3012t

3

+ 576t

2

+ 576t � 512 3.3 sec

6 t

10

+38t

9

�99t

8

+1334t

7

�4272t

6

+9244t

5

�8297t

4

+1222t

3

+1023t

2

�74t+1 3.4 sec

7 t

10

� 20t

9

+ 80t

8

+ 200t

7

� 3770t

6

+ 872t

5

+ 29080t

4

+ 36280t

3

� 456615t

2

+

541260t � 517448

3.9 sec

8 t

10

� 10t

8

+ 20t

7

+ 235t

6

+ 606t

5

+ 800t

4

+ 600t

3

+ 270t

2

+ 70t + 16 3.2 sec

9 t

12

+ 6t

9

+ 4t

8

+ 8t

6

� 4t

5

� 12t

4

+ 8t

3

� 8t+ 8 7.4 sec

10 t

12

+9t

11

+3t

10

�73t

9

�177t

8

�267t

7

�315t

6

�267t

5

�177t

4

�73t

3

+3t

2

+9t+1 14 sec

11 t

12

� 34734t

11

+ 401000259t

10

� 1456627492885t

9

� 2537142937228035t

8

+

18762072755679375516t

7

� 812368636358864062944t

6

� 70132863629758257512231931t

5

+

25834472514893102332821062085t

4

+ 76623280610352450247247939584745t

3

�

45080885015422662132515763499758450t

2

� 2070499552240812214288316981071818900t �

550505759097778545485364826246753544

98 sec

12 t

15

+ 20t

12

+ 125t

11

+ 503t

10

+ 1650t

9

+ 3430t

8

+ 4690t

7

+ 4335t

6

+ 2904t

5

+

1400t

4

+ 485t

3

+ 100t

2

+ 15t + 1

10 sec

type [1; : : : ; 1], but in this case the number of potential blocks of size d which contain �

is equal to

�

n

d

�

. Another problem of Dixons algorithm is to check that a potential block

is not a block. In this case Hensel lifting is used up to a bound which is much bigger

than the m � th power of the bound used in our algorithm. An important fact is that

we lift the factors using Hensel lifting only once and save the congruence factorization.

So for each block there are only a few multiplications in the p-adic �eld E neccessary to

get the potential generating polynomial in comparison to Dixons method which reduces

a lattice of degree m by the LLL-method presented in Lenstra, Lenstra, Lov�asz (1982).

6. Examples

Table 1 lists 12 examples of test polynomials and the computation times needed by our

algorithm. A. Hulpke (1995) uses these examples to compare the algorithms presented in

[Casperson, Ford, McKay (1995), Lazard, Valibouze (1993), Cohen, Diaz y Diaz (1991),

Hulpke (1995)]. We remark that the algorithm presented in Cohen, Diaz y Diaz (1991)

does in general not compute all sub�elds. Nevertheless in the more complicated exam-

ples our algorithm runs faster. In comparison with the other methods our algorithm runs

always faster. The di�erences in compuations times become more signi�cant if the ex-
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amples become more complex. In the last two examples our algorithm is 173 resp. 1013

times faster than the best of the other ones.

Consider the algebraic number �eld K (Example 10) which is generated by the poly-

nomial

f(t) = t

12

+9t

11

+3t

10

�73t

9

�177t

8

�267t

7

�315t

6

�267t

5

�177t

4

�73t

3

+3t

2

+9t+1:

This example is taken from Lazard, Valibouze (1993). The authors use the fact that the

polynomial f is reciprocal to �nd a sub�eld of degree 6. Then they only compute sub�elds

of that sub�eld.

We note that all computed generating polynomials for sub�elds have the form (t�1)

m

.

Substituting t = t+ 1 in f we obtain the following generating polynomials:

(i) t

6

�21t

5

+147t

4

�378t

3

+1323t�1323 with zero 11+2��73�

2

�177�

3

�267�

4

�

315�

5

� 267�

6

� 177�

7

� 73�

8

+ 3�

9

+ 9�

10

+ �

11

:

(ii) t

4

�63t

2

�1323 with zero

1

63

(995+2372��10873�

2

�32232�

3

�50058�

4

�63357�

5

�

55881�

6

� 38445�

7

� 18255�

8

+ 16�

9

+ 2188�

10

+ 253�

11

):

(iii) t

3

� 21t

2

+1323 with zero

1

21

(282� 556�� 2012�

2

� 2562�

3

� 3405�

4

� 2772�

5

�

1743�

6

� 849�

7

+ 234�

8

+ 171�

9

� 14�

10

� 4�

11

):

(iv) t

2

+ 63t� 1323 with zero

1

3

(�222 + 130�� 115�

2

� 1062�

3

� 1566�

4

� 2667�

5

�

2583�

6

� 1983�

7

� 1341�

8

� 102�

9

+ 152�

10

+ 19�

11

):

Finally we present two more examples. Consider the algebraic number �eld K gener-

ated by the polynomial

f(t) = t

12

+ t

11

�28t

10

�40t

9

+180t

8

+426t

7

+89t

6

�444t

5

�390t

4

�75t

3

+27t

2

+11t+1:

K is a Galois extension of Q with Galois group A

4

. We know that K has three sub�elds

of degree 6, four of degree 4, and one of degree 3.

The following sub�elds are calculated:

(i) t

6

� 6t

5

� 2t

4

+ 48t

3

� 45t

2

� 22t+ 1 with zero

1

196

(197�

11

+215�

10

�5664�

9

�8255�

8

+39260�

7

+85688�

6

�4800�

5

�102279�

4

�

52471�

3

+ 3646�

2

+ 4797�+ 558).

(ii) t

6

� 3t

5

� 11t

4

+ 27t

3

� 3t

2

� 11t+ 1 with zero

1

196

(�433�

11

� 443�

10

+ 12200�

9

+ 17603�

8

� 79964�

7

� 187354�

6

� 25898�

5

+

211713�

4

+ 158845�

3

+ 9988�

2

� 16091�� 2620).

(iii) t

6

� 24t

5

+ 211t

4

� 816t

3

+ 1282t

2

� 528t� 241 with zero

1

196

(3473�

11

+40546�

10

+116829�

9

�307383�

8

�2296210�

7

�3295368�

6

+10194228

�

5

+ 21948643�

4

+ 27601378�

3

+ 14431917�

2

+ 1621177�� 658412).

(iv) t

4

� 24t

3

+ 38t

2

+ 16t+ 1 with zero

1

14

(�83�

11

+29�

10

+2287�

9

+229�

8

� 15304�

7

� 14599�

6

+12655�

5

+19396�

4

+

5550�

3

� 888�

2

� 658�� 14).

(v) t

4

� 7t

3

+ 5t

2

+ 6t+ 1 with zero

1

196

(�953�

11

� 1258�

10

+27084�

9

+46419�

8

� 178833�

7

� 462883�

6

� 83043�

5

+

519472�

4

+ 389689�

3

+ 23745�

2

� 38628�� 6326).

(vi) t

4

� 28t

3

� 15t

2

+ 3t+ 1 with zero

1

196

(256�

11

+244�

10

�7207�

9

�9906�

8

+47336�

7

+107223�

6

+12041�

5

�120443�

4

�

88903�

3

� 6678�

2

+ 8709�+ 1525).
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(vii) t

4

� 10t

3

� 32t

2

+ 410t� 241 with zero

4�

11

+46�

10

+128�

9

� 362�

8

� 2560�

7

� 3524�

6

+5848�

5

+24142�

4

+30082�

3

+

15750�

2

+ 1804�� 723.

(viii) t

3

+ 14t

2

+ 11t� 1 with zero

1

196

(670�

11

+ 165�

10

� 18884�

9

� 12568�

8

+ 130059�

7

+ 187423�

6

� 81449�

5

�

236127�

4

� 84296�

3

+ 11769�

2

+ 8375�+ 886).

We remark that K is the Hilbert class �eld of all sub�elds except the ones of degree

4. The computations are done in 11 seconds.

As a last example consider the algebraic number �eld K generated by a root of f(t) =

t

24

+8t

23

�32t

22

�298t

21

+624t

20

+4592t

19

�8845t

18

�31488t

17

+76813t

16

+65924t

15

�

265616t

14

+48348t

13

+385639t

12

�394984t

11

�20946t

10

+369102t

9

�362877t

8

+183396t

7

+

434501t

6

� 194418t

5

+ 450637t

4

+ 125800t

3

� 16401t

2

� 45880t+ 115151.

This �eld is normal and has Galois group S

4

. All sub�elds are computed in 3641

seconds. In the following we give only the generating polynomials for the sub�elds. We

remark that the embeddings are calculated, too.

(i) t

12

�64t

11

+1528t

10

�16044t

9

+74871t

8

�161098t

7

+167141t

6

�165210t

5

+297029t

4

�

337174t

3

+ 250670t

2

� 232280t+ 115151

(ii) t

12

�16t

11

+108t

10

�497t

9

+1272t

8

+696t

7

�6462t

6

+11299t

5

+40150t

4

�91516t

3

+

117738t

2

+ 60955t+ 115151

(iii) t

12

�16t

11

+96t

10

�360t

9

+1611t

8

�586t

7

+14297t

6

+61286t

5

+171105t

4

+391026t

3

+

566042t

2

+ 406920t+ 115151

(iv) t

12

+12t

11

+66t

10

+126t

9

�197t

8

+448t

7

+13451t

6

+45368t

5

+40519t

4

+58994t

3

+

345440t

2

+ 289742t+ 115151

(v) t

12

+12t

11

+66t

10

+235t

9

+990t

8

+3810t

7

+13828t

6

+51693t

5

+154690t

4

+325806t

3

+

446598t

2

+ 343639t+ 115151

(vi) t

12

�64t

11

+1502t

10

�16240t

9

+90981t

8

�256278t

7

+307603t

6

�45436t

5

�422451t

4

+

596072t

3

� 38966t

2

� 330506t+ 115151

(vii) t

12

� 16t

10

� 80t

9

+ 375t

8

+ 4686t

7

+ 21445t

6

+ 79986t

5

+ 221445t

4

+ 534570t

3

+

960134t

2

+ 596720t+ 115151

(viii) t

12

+16t

10

�79t

9

+389t

8

+1480t

7

+5387t

6

+18142t

5

+62659t

4

�34301t

3

+8181t

2

�

167175t+ 115151

(ix) t

12

�64t

11

+1386t

10

�12910t

9

+58159t

8

�149404t

7

+321179t

6

�533388t

5

+699503t

4

�

782862t

3

+ 588268t

2

� 407282t+ 115151

(x) t

8

+ 66t

7

+ 1665t

6

+ 15423t

5

+ 82484t

4

+ 180311t

3

+ 256795t

2

+ 230941t+ 115151

(xi) t

8

+ 66t

7

+ 1603t

6

+ 17522t

5

+ 87416t

4

+ 178964t

3

+ 218318t

2

+ 184564t+ 115151

(xii) t

8

+ 84t

7

+ 2043t

6

+ 7800t

5

+ 4523t

4

� 76082t

3

+ 250207t

2

+ 121808t+ 115151

(xiii) t

8

+ 36t

7

+ 799t

6

+ 8903t

5

+ 67422t

4

+ 156757t

3

+ 182615t

2

+ 32205t+ 115151

(xiv) t

6

� 12t

5

+ 117t

4

� 23296t

3

+ 83483t

2

� 68948t+ 115151

(xv) t

6

+ 28t

5

� 45t

4

� 10361t

3

+ 63645t

2

+ 49178t+ 115151

(xvi) t

6

� 31t

5

+ 1054t

4

+ 5482t

3

� 39876t

2

� 257589t+ 115151

(xvii) t

6

� 11t

5

+ 1135t

4

+ 5420t

3

� 14079t

2

� 182673t+ 115151

(xviii) t

6

� 57t

5

+ 210t

4

� 1896t

3

+ 13010t

2

+ 89517t+ 115151

(xix) t

6

� 49t

5

+ 697t

4

� 5202t

3

+ 38951t

2

� 104893t+ 115151

(xx) t

6

� 2260t

5

+ 258433t

4

� 8759552t

3

+ 89549811t

2

� 190825164t+ 77649707



On Computing Sub�elds 13

(xxi) t

4

+ 17t

3

+ 595t

2

+ 15905t+ 115151

(xxii) t

4

� 31t

3

+ 1004t

2

� 14302t+ 115151

(xxiii) t

4

� 85t

3

+ 2392t

2

� 24634t+ 115151

(xxiv) t

4

� 55t

3

+ 2158t

2

� 26278t+ 115151

(xxv) t

3

� 853t

2

+ 74371t� 115151

(xxvi) t

3

� 1253t

2

+ 44579t� 115151

(xxvii) t

3

� 2525t

2

+ 112131t� 918751

(xxviii) t

2

� 45252t+ 115151

All computations were done on a HP 9000/735 in KASH [Daberkow, Fieker, Kl�uners,

Pohst, Roegner, Sch�ornig, Wildanger (1995)], the shell of KANT V4.
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