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Abstract. In this paper we look in detail at the curves which arise in the

method of Galbraith and Smart for producing curves in the Weil restriction of

an elliptic curve over a �nite �eld of characteristic two of composite degree. We

explain how this method can be used to construct hyperelliptic cryptosystems

which could be as secure as cryptosystems based on the original elliptic curve.

On the other hand, we show that the same technique may provide a way of

attacking the original elliptic curve cryptosystem using recent advances in the

study of the discrete logarithm problem on hyperelliptic curves.

We examine the resulting higher genus curves in some detail and propose an

additional check on elliptic curve systems de�ned over �elds of characteristic

two so as to make them immune from the methods in this paper.

1. Introduction

In this paper we address two problems: how to construct hyperelliptic cryptosys-

tems and how to attack elliptic curve cryptosystems de�ned over �elds of composite

degree over F

2

.

As explained in [17], there is currently no practical method which generates cryp-

tographically secure Jacobians of hyperelliptic curves that have no special added

structure. We shall present a method that will produce a hyperelliptic Jacobian re-

lated to a `random' elliptic curve, which is secure assuming one believes the discrete

logarithm problem on the elliptic curve is itself hard.

For the second problem we turn our construction of hyperelliptic cryptosystems

on its head and argue that this provides evidence for the weakness of the original

elliptic curve discrete logarithm problem. We stress that this does not provide

evidence for the weakness of elliptic curve systems in general, but only those which

are de�ned over the special �nite �elds considered in this paper. These �elds are

extensions of composite degree over the �eld F

2

.

Let

E : Y

2

+XY = X

3

+ �X

2

+ �

denote an elliptic curve de�ned over a �eld of characteristic two, which is not de�ned

over a proper sub�eld of K = F

q

n

. We let m denote an integer, which is de�ned in

Lemma 6, that satis�es 1 � m � n. We assume that our elliptic curve satis�es one

of the following conditions;

y

8

<

:

either n is odd;

or m = n;

or Tr

K=F

2

(�) = 0:
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We shall see that if n is even, then only approximately 1=(2q) of all elliptic curves

over K are eliminated by the above condition. We shall prove the following

Theorem 1. Let E(F

q

n

) denote an elliptic curve satisfying condition (y). Let

#E(F

q

n

) = ph, where p is a large prime. Assuming the map � de�ned below

does not have kernel divisible by p, one can solve the discrete logarithm problem

in the p-cyclic subgroup of E(F

q

n

) in time O(q

2+�

) where the complexity estimate

holds for a �xed value of n � 4 as q!1.

The complexity in the Theorem should be compared to the time estimate of

O(q

n=2

) for the best general purpose algorithm, namely Pollard's rho method. We

conjecture that the condition on the kernel of the map � is true in all cryptograph-

ically interesting cases.

The implied constant in the O(�) notation of the Theorem contains a very bad

dependence on n, of the order of O(2

n

!). Hence, for certain values of n the crossover

point between the method of the Theorem and Pollard's rho method may be at

higher values of q than are used in practical elliptic curve cryptosystems. However,

we shall exhibit experimental evidence that for n = 4 and around 1=q of the elliptic

curves de�ned over F

q

4
, the method of the above Theorem is better than Pollard

rho for values of q used in practice. For other elliptic curves over F

q

4
our method

is only asymptotically better than Pollard rho, and further practical experiments

need to be carried out to deduce whether the crossover point is at a size of q which

is of cryptographic interest.

Our methods are based on the idea of Weil descent on elliptic curves. Hence,

much of the following is an extension of the work begun by Frey in [7] and continued

in [9], to which we refer the reader for further details. The details of elliptic curve

cryptosystems which we shall require can be found in [3].

The paper is organised as follows. In Section 2 we give some simple examples of

curves de�ned over a special type of �eld extension, for which hand calculation is

particularly simple. In Section 3 we give proofs that the properties observed in the

hand calculations hold in general. In addition, we shall construct an explicit group

homomorphism

� : E(F

q

n

)! Cl

0

(H);

where Cl

0

(H) is the degree zero divisor class group of a hyperelliptic function �eld

over F

q

. As we stated earlier, if the map � maps the cryptographically interesting

subgroup of E(F

q

n

) to the zero element in Cl

0

(H) then our method will fail to work.

However, since it is highly unlikely that the kernel of � will contain almost the whole

of the group E(F

q

n

), we expect that our method will work in all cryptographically

interesting examples.

In Section 4 we show how our method of producing curves in the Weil restriction

can be used to construct hyperelliptic cryptosystems, whilst in Section 5 we explain

how one could possibly attack the underlying elliptic curve system using the Weil

restriction. In Section 6 we report on an experiment using the index calculus

algorithm of Gaudry on one of the curves of genus four produced by our method;

this is used to help decide which genera should be used in practice for constructing

cryptographic systems and which elliptic curve systems are made weaker by our

methods. Finally in Section 7, we turn our attention to other types of �nite �elds

and discuss why the ideas of this paper are unlikely to work in other cases. In

particular, for a large proportion of elliptic curves de�ned over F

2

p

, where p is
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prime, we show that the methods of this paper give no decrease in security of the

resulting cryptosystem.
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2. Example Curves in the Weil Restriction

Let k = F

q

denote some �nite �eld of characteristic two, and let n � 2 denote an

integer. In practice we are thinking of the situation where n is quite small and q is

large enough so that q

n

> 2

160

. Let K denote the �eld extension F

q

n

, with k-basis

f 

0

;  

1

; : : : ;  

n�1

g.

In this section we shall consider elliptic curves E over K, given by the equation:

Y

2

+XY = X

3

+ �;

where � 2 K. Notice that for such curves condition (y) is satis�ed. We assume

E(F

q

n

) contains a subgroup of prime order p with p � q

n

.

We set

� = b

0

 

0

+ b

1

 

1

+ : : :+ b

n�1

 

n�1

;

X = x

0

 

0

+ x

1

 

1

+ : : :+ x

n�1

 

n�1

;

Y = y

0

 

0

+ y

1

 

1

+ : : :+ y

n�1

 

n�1

;

where b

i

2 k are given and x

i

; y

i

2 k are variables. Substituting these equations

into the equation for our elliptic curve, and equating coe�cients of  

i

, we obtain

an abelian variety A de�ned over k, of dimension n, the group law on A being given

by the group law on E(K). The variety A is called the Weil restriction, and the

above process is called Weil descent.

Since A is isomorphic to E(K) as a group, the variety A will contain an irre-

ducible subvariety B (we do not exclude B = A) with group order divisible by p. In

curves of cryptographic interest, where p � q

n

, this subvariety will either equal the

whole of A or have dimension at least n�1, which can be seen by simple cardinality

arguments. The variety B is the part of A in which our discrete logarithm problem

is de�ned. We wish to �nd a curve C in A whose Jacobian contains a subvariety

isogenous to B. Recall that B is the part of A which is interesting for cryptographic

applications. Hence, we must have g = dimJac(C) � dimB where dimB as stated

above will be either n or n� 1. For the applications we would like the genus of C

to be linear in n, but it is highly unlikely such a curve exists at all.

For the rest of this section we shall look at a special set of �nite �elds for which

it is relatively easy to perform calculations. Our aim is to �x the ideas and provide

a rich set of examples for the reader and for later in the paper. In the next section

we shall show that the remarkable properties we observe in this section hold in

general for �elds of characteristic two. The method used is a natural extension of

the one presented in [9].
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We specialise to those �elds K for which we can take  

i

= �

2

i

in our basis of K

over k where � + �

2

+ �

4

+ � � �+ �

2

n�1

= 1. The reason for choosing such a basis is

so that the curves in the Weil restriction below have `small' degree and are easy to

write down. One reason for this is that squaring an element represented by such a

basis is simply a cyclic shift of the coe�cients since

�

2

n

=

�

�

2

n�1

�

2

=

�

1 + � + �

2

+ � � �+ �

2

n�2

�

2

= 1 + �

2

+ �

4

+ � � �+ �

2

n�1

= �:

However, such a basis does not always exist, since we require the existence of an

irreducible factor of degree n of the polynomial h(x) = x

2

n�1

+ � � �+x

4

+x

2

+x+1

over the �eld k. Hence, we clearly require that the degree of k over F

2

must be

coprime to n, which we assume to be the case for the rest of this section. In addition,

for a root � of such an irreducible factor we require that the set f�; �

2

; �

4

; : : : ; �

2

n�1

g

forms a basis of K over k.

Hence, for this section, we have restricted the choice of q and n. For n = 2,

we can always use the element de�ned by �

2

+ � + 1 = 0 whilst for n = 3 we

can always use the element de�ned by �

3

+ �

2

+ 1 = 0. For certain higher values

of n we can obtain many irreducible factors of h(x) of degree n over F

2

, and by

the coprimality of the degree of k to n we see that such factors will be irreducible

over k. For example, if n + 1 is a prime and q is a generator of the multiplicative

group of the �eld F

n+1

then we can take � as a generator of K over k, where

�

n

+ �

n�1

+ � � �+ � + 1 = 0.

To produce a curve of low genus in A one could produce a curve of low degree,

and hence of hopefully low genus. Such a curve of low degree can be obtained by

intersecting A with the hyperplanes given by x

0

= x

1

= � � � = x

n�1

= x. Hence,

we look at the subvariety de�ned by restricting X to lie in k. We obtain a curve C

de�ned by the equations

C :

8

>

>

>

<

>

>

>

:

y

2

n�1

+ xy

0

+ x

3

+ b

0

= 0;

y

2

0

+ xy

1

+ x

3

+ b

1

= 0;

.

.

.

y

2

n�2

+ xy

n�1

+ x

3

+ b

n�1

= 0:

That we can obtain such sparse equations is due to our choice of basis of K over k.

On elimination of variables we produce a curve in x and y = y

0

of the form

C : y

2

n

+ x

2

n

�1

y +

n�1

X

i=0

x

2

n

+2

i

+ g(x)

where g(x) is a polynomial, depending on b

0

; : : : ; b

n�1

, of degree less than or equal

to 2

n

. The polynomial g(x) is given by the formulae:

g(x) =

n

X

i=1

b

2

n�i

i

x

2

n

�2

n�i+1

;

where we make the identi�cation b

n

= b

0

. The Jacobians of the irreducible compo-

nents of the curve C are isogenous to abelian varieties which contain subvarieties of

A, by the arguments of Section 2 of [9]. In examples of cryptographic interest the

subvariety B of A has order divisible by a large prime p, hence the degree of the
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isogeny is likely to be coprime to p. Therefore, we can expect that the Jacobians

actually contain a subgroup isomorphic to the subgroup of B of order p.

We give the following examples:

n = 2.

C

2

: y

4

+ x

3

y + x

6

+ x

5

+ b

0

x

2

+ b

2

1

= 0:

If the original elliptic curve is de�ned over the base �eld, i.e. b

0

= b

1

, then the

curve C has two irreducible components, each being an elliptic curve. In all other

cases it is irreducible. Substituting a large number of elements for the parameters

b

0

and b

1

into the equation for C

2

, we found that experimentally the genus of this

curve always seems to be 2.

n = 3.

C

3

: y

8

+ x

7

y + x

12

+ x

10

+ x

9

+ b

0

x

6

+ b

2

2

x

4

+ b

4

1

= 0:

The curve is reducible when b

0

= b

1

= b

2

, in other words when the original elliptic

curve is de�ned over the base �eld k. In all other cases it is irreducible, and

experimentally the genus of this curve always seems to be 3 or 4.

n = 4.

C

4

: y

16

+ x

15

y + x

24

+ x

20

+ x

18

+ x

17

+ b

0

x

14

+ b

2

3

x

12

+ b

4

2

x

8

+ b

8

1

= 0:

Experimentally, when the curve is irreducible, the genus of this curve always seems

to be at most 8. This curve is reducible when b

3

= b

0

+ b

1

+ b

2

, and when it is

reducible, one of the components is given by

C

4a

: y

8

+ x

4

y

4

+ x

6

y

2

+ x

7

y + x

12

+ x

9

+ b

0

x

6

+ (b

2

2

+ b

2

1

)x

4

+ b

4

1

= 0:

When C

4a

is irreducible it experimentally always has genus at most 4.

Note, in all the cases when the curve C was irreducible, it experimentally had

genus equal to 2

n�1

or 2

n�1

� 1. In addition, we noticed that the irreducible

components were always hyperelliptic. In the next section we shall prove that these

remarkable properties hold in general for curves satisfying condition (y).

3. Hyperellipticity and Genus of Curves in the Weil Restriction

In this section we show that the observations of the previous section about

the genus, irreducibility and hyperellipticity of the curves C hold in general. In

addition, we shall show the existence of a computable mapping from E(F

q

n

) to the

divisor class group of a hyperelliptic curve. It is this mapping which translates the

hard elliptic curve discrete logarithm problem into a potentially easier hyperelliptic

discrete logarithm problem.

3.1. The curve in the Weil restriction. We shall now let K denote an arbitrary

degree n extension of a �nite �eld k of characteristic two of q elements. We shall

make no assumptions about the existence of special types of bases of K over k as

we did in the previous section. In this section, to keep track of which �elds we are

considering, all �xed elements of K will be denoted by Greek letters.

We take an elliptic curve

E : Y

2

+XY = X

3

+ �X

2

+ �;

where �; � 2 K, � 6= 0. We do not assume condition (y) unless explicitly stated.
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We can form the Weil restriction as in the previous section by substituting the

coordinate representations of X and Y and expanding with respect to any given

basis of K over k, but for simplicity we assume that the sum of the basis elements

is one. We intersect the resulting abelian variety A with the hyperplanes which

mark out the subvariety of values of X which lie in k. The resulting subvariety of

A will be a curve de�ned over k, in n+1 dimensional space, which we shall denote

by C, as in the previous section.

We wish to study the curves C geometrically, so we consider C over the algebraic

closure of k. In fact, we shall only need to go to the extension K.

Lemma 2. By a linear change of variables y

i

7! w

i

, de�ned over K, we �nd that

C is birationally equivalent to the curve D, de�ned over K, given by

D :

8

>

<

>

:

w

2

0

+ xw

0

+ x

3

+ �

0

x

2

+ �

0

= 0;

.

.

.

w

2

n�1

+ xw

n�1

+ x

3

+ �

n�1

x

2

+ �

n�1

= 0;

where we have �

j

= �

j

(�) and �

j

= �

j

(�), with � the Frobenius automorphism of

K over k.

We can extend the Frobenius automorphism � to K[x;w

0

; : : : ; w

n�1

] via �(x) =

x, �(w

i

) = w

i+1

for 0 � i < n� 1 and �(w

n�1

) = w

0

. We obtain �(y

i

) = y

i

for all

0 � i � n� 1.

Proof. It is convenient to prove the Frobenius automorphism statement �rst. That

� can be extended as stated is obvious. Next set T =

�

�

j

( 

i

)

�

0�i;j�n�1

2 K

n�n

and notice that T is invertible since TT

t

=

�

Tr

K=k

( 

i

 

j

)

�

is invertible because

�nite �eld extensions are separable. The linear change of variables of the Lemma

is then (w

0

; : : : ; w

n�1

) = (y

0

; : : : ; y

n�1

)T .

Let t

i

denote the i-th column of T , for 0 � i � n � 1. The y

i

are expressed

as K-linear combinations of the w

i

via (y

0

; : : : ; y

n�1

) = (w

0

; : : : ; w

n�1

)T

�1

. We

apply � to (w

0

; : : : ; w

n�1

) = (y

0

; : : : ; y

n�1

)T and obtain

(w

1

; : : : ; w

n�1

; w

0

) = (�(y

0

); : : : ; �(y

n�1

))

�

t

1

; : : : ; t

n�1

; t

0

�

= (y

0

; : : : ; y

n�1

)

�

t

1

; : : : ; t

n�1

; t

0

�

:

The second equation holds because of the relation of the y

i

and w

i

. As the matrix

�

t

1

; : : : ; t

n�1

; t

0

�

is invertible we conclude �(y

i

) = y

i

.

We are left to prove the birational equivalence of C and D. Let  

0

; : : : ;  

n�1

be

a basis of K over k with

P

 

i

= 1. The equations of C are obtained by expanding

Y =

X

y

i

 

i

; � =

X

a

i

 

i

� =

X

b

i

 

i

and X = x

inE, and equating the resulting coe�cients of the  

i

. We obtain f

i

2 k[x; y

0

; : : : ; y

n�1

]

such that

w

2

0

+ xw

0

+ x

3

+ �

0

x

2

+ �

0

=

n�1

X

i=0

f

i

(x; y

0

; : : : ; y

n�1

) 

i

; :

The corresponding equations for C are

C :

8

>

<

>

:

f

0

(x; y

0

; : : : ; y

n�1

) = 0;

.

.

.

f

n�1

(x; y

0

; : : : ; y

n�1

) = 0:
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We denote the left hand sides of D by g

i

2 K[x;w

0

; : : : ; w

n�1

]. Upon applying T

column wise to the equations of C we then see

�

f

i

(x; y

0

; : : : ; y

n�1

)

�

0�i�n�1

T =

�

X

i

f

i

(x; y

0

; : : : ; y

n�1

)�

j

( 

i

)

�

0�j�n�1

=

�

�

j

�

X

i

f

i

(x; y

0

; : : : ; y

n�1

) 

i

��

0�j�n�1

=

�

�

j

�

w

2

0

+ xw

0

+ x

3

+ �

0

x

2

+ �

0

��

0�j�n�1

=

�

g

i

(x;w

0

; : : : ; w

n�1

)

�

0�i�n�1

;

which shows that C is linearly transformed into D by T .

Let F

i

be the splitting �eld of the i-th equation de�ning D over K(x).

We wish to form the compositum F = F

0

� � �F

n�1

over K(x). Generally, a

compositum of �eld extensions L

i

=K can only be formed meaningfully when there

is a covering �eld

�

K such that K and all L

i

are embedded into

�

K. If the L

i

=K are

Galois all possible embeddings of K and L

i

into any

�

K will give a K-isomorphic

compositum. In this case we say that the compositum can be formed without

ambiguity.

Lemma 3. We can form the compositum F = F

0

� � �F

n�1

over K(x) without am-

biguity. Let m 2 Zsuch that [F : K(x)] = 2

m

. Viewed over K the curve D

has 2

n�m

irreducible reduced components, each having function �eld K-isomorphic

to F .

Proof. We can form F without ambiguity because the extensions F

i

=K(x) are all

quadratic, hence Galois over K(x). More speci�cally, in order to generate F over

K(x) we can choose a suitable subset of m equations of the equations de�ning the

curve D, such that adjoining �w

l

i

, for 1 � i � m, to K(x) gives F , with �w

l

i

a root

of the left hand side of the i-th such equation. The remaining n�m equations of

D will each have two solutions �w

v

j

and �w

v

j

+ x in F .

Consider the homomorphism

� : K[x;w

0

; : : : ; w

n�1

]! K[x; �w

0

; : : : ; �w

n�1

] � F:

The kernel I of this homomorphism is a prime ideal of dimension one, since F

is a �eld of transcendence degree one over K being generated by x; �w

0

; : : : ; �w

n�1

over K. This prime ideal contains the left hand sides of D by construction of F .

Therefore, I de�nes an irreducible reduced component of D having function �eld

K-isomorphic to F .

The statement about the number of these components follows from the possible

choices of �w

v

j

or �w

v

j

+ x in the de�nition of the homomorphism. This can be seen

in detail as follows: Assume I were contained in the kernel J of a homomorphism

 as above which maps w

v

j

to �w

v

j

+ x. There are f; g 2 K[x;w

0

; : : : ; w

m�1

] such

that �(g);  (g) 6= 0 and �w

v

j

= �(f)=�(g) =  (f)= (g). Then gw

v

j

+ f 2 I � J

and g(w

v

j

+ x) + f 2 J hence gx 2 J and x 2 J because  (g) 6= 0 and J is prime.

This is clearly a contradiction as x is not mapped to zero by  .

3.2. Artin-Schreier properties. If we multiply the equations de�ning D by x

�2

,

substitute s

i

= w

i

=x+�

1=2

i

=x and z = 1=x, we see that another model for our curve
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D is

F :

8

>

>

<

>

>

:

s

2

0

+ s

0

+ z

�1

+ �

0

+ �

1=2

0

z = 0;

.

.

.

s

2

n�1

+ s

n�1

+ z

�1

+ �

n�1

+ �

1=2

n�1

z = 0:

The advantage of this model is that we can apply Artin-Schreier theory as out-

lined in [2, pp. 22{24], [14, pp. 275{281] and [18, p. 115]. We will use the following

special version of [14, p. 279, Thm 3.3]:

Theorem 4. Let p be a prime number, }(x) = x

p

�x be the Artin-Schreier opera-

tor, K be a �eld of characteristic p and

�

K be a �xed separable closure of K. For ev-

ery additive subgroup � � K

+

with }(K) � � � K there is a �eld L = K

�

}

�1

(�)

�

with K � L �

�

K obtained by adjoining all roots of all polynomials x

p

� x � d for

d 2 � in

�

K to K. Given this, the map

� 7! L = K

�

}

�1

(�)

�

de�nes a 1-1 correspondence between such additive subgroups � and Abelian exten-

sions L=K in

�

K of exponent p.

Before giving the result we state the following Lemma which will be used repeat-

edly in the sequel.

Lemma 5. Any sum of an even number of the �

j

is of the form v

2

+ v with a

suitable v 2 F

2

(�).

Proof. For f(t) =

P

i

d

i

t

i

2 F

2

[t] we de�ne f(t)" =

P

i

d

i

"

2

i

for all " 2 K, thereby

turning the additive group K

+

of K into an F

2

[t]-module. The required statement

is then reformulated as follows: For f(t) 2 F

2

[t] with f(1) = 0 there is a suitable

v 2 F

2

(�) such that f(t)� = (t + 1)v (remember that every �

j

is of the form �

2

i

).

But this is now easily seen to be true. Namely, f(t) is divisible by t + 1 and v can

thus be chosen to be f(t)=(t + 1)�.

Lemma 6. For m as in Lemma 3 we have the equality

m = dim

F

2

�

Span

F

2

��

1; �

1=2

0

�

; : : : ;

�

1; �

1=2

n�1

�	

�

:(1)

The �eld K is the exact constant �eld of F (i.e. K is algebraically closed in F ) and

F is the compositum of the �rst m �elds F

i

over K(z), i.e. F = F

0

� � �F

m�1

.

The Galois group of F=K(z) is isomorphic to (Z=2Z)

m

. The action of � 2

Gal(F=K(z)) is given by � (�s

i

) = �s

i

or � (�s

i

) = �s

i

+ 1, where �s

i

is a root of the left

hand side of the i-th equation of F in F , for 0 � i � n� 1.

Proof. Consider the operator }(x) = x

2

+x and the additive group (or F

2

-module)

�

0

= Span

F

2

�

z

�1

+ �

0

+ �

1=2

0

z; : : : ; z

�1

+ �

n�1

+ �

1=2

n�1

z

	

:

We further de�ne � = �

0

+ }

�

K(z)

�

. With this we have F = K(z)

�

}

�1

(�)

�

=

K(z)

�

}

�1

(�

0

)

�

and

m = dim

F

2

�

�=}

�

K(z)

��

= dim

F

2

�

�

0

=�

0

\ }

�

K(z)

��

;

where the �rst equality holds according to Theorem 4 and the second equality holds

according to the �rst isomorphism theorem for groups.

We have �

0

\}

�

K(z)

�

= �

0

\}(K) because applying } to non-constant functions

in K(z) would necessarily involve quadratic terms in z which are not to be found
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in �

0

. Let us abbreviate U = Span

F

2

��

1; �

1=2

0

�

; : : : ;

�

1; �

1=2

n�1

�	

. Expanding the

elements in �

0

into vectors in K

2

by taking the coe�cients of z

�1

and z gives a

surjective linear map �

0

! U . Its kernel is �

0

\ K. But every element of the

kernel must be a sum of an even number of the �

j

because otherwise the z

�1

would

not cancel. From Lemma 5 we conclude that �

0

\ K = �

0

\ }(K), and using

�

0

\}(K) = �

0

\ }

�

K(z)

�

, we obtain �

0

=�

0

\ }

�

K(z)

�

�

=

U . The formula for m

is thereby veri�ed.

In order to prove that K is the exact constant �eld of F we have to show that

� \ K � }(K) (remember F = K(z)

�

}

�1

(�)

�

). But again every u 2 � \K is

congruent to a sum of an even number of the �

j

modulo }(K). Lemma 5 gives

u 2 }(K) and K is hence algebraically closed in F .

The statement about the compositum is seen as follows: The �rst m terms in

the de�nition of �

0

constitute a basis of the F

2

-vector space �

0

. This is due to

the property that, if the i-th term is dependent on the previous j-th terms for

0 � j � i � 1, then the i + 1; i + 2; : : : terms would be as well, because they arise

by applying � to the i-th term. Hence, F is obtained by adjoining roots of the �rst

m left hand sides of F to K(z) from which the statement follows.

From Theorem 4 and [F : K(z)] = 2

m

we obtain Gal(F=K(z))

�

=

(Z=2Z)

m

.

The action of � 2 Gal(F=K(z)) is as stated because � �xes all z

�1

+�

i

+ �

1=2

i

z by

de�nition and hence has to map roots of s

2

i

+s

i

+z

�1

+�

i

+�

1=2

i

z to themselves.

3.3. Hyperellipticity and genus. Adding the 0-th equation to the i-th equation

of F for i = 1; : : : ;m � 1 and substituting t

i

for s

0

+ s

i

, 

i

for �

0

+ �

i

and �

i

for �

1=2

0

+ �

1=2

i

we obtain

t

2

i

+ t

i

+ �

i

z + 

i

= 0; i = 1; : : : ;m� 1:(2)

These equations de�ne extensions L

i

of K(z) such that F = F

0

L with L =

L

1

� � �L

m�1

the compositum of the L

i

over K(z). The �eld L is crucial to es-

tablishing the hyperellipticity, since it de�nes a rational sub�eld of index two, as

we shall now show.

Lemma 7. The �eld L is an extension �eld of degree 2

m�1

of K(z). It is a rational

function �eld L = K(c) having a generator c such that z = �

�1

+

P

m�1

i=0

�

i

c

2

i

with

�

i

2 K and �

0

; �

m�1

6= 0.

Proof. The extension �eld statement follows from 2 [L : K(z)] = [F : L][L : K(z)] =

[F : K(z)] = 2

m

.

We now apply inductively some further transformations to (2). We wish to

determine a change of variables so that we obtain equations of the form

t

2

i

+ t

i

+ �

i

t

i�1

+ 

i

= 0; i = 1; : : : ;m � 1;(3)

where t

0

= z.

We take the �rst equation of (2) (i = 1) to be the �rst equation of (3). Now

suppose after already having performed some transformations (with t

i

, 

i

and �

i

substituted properly), for some j 2 [2; : : : ;m� 1], we are given equations

t

2

i

+ t

i

+ �

i

t

i�1

+ 

i

= 0; i = 1; : : : ; j � 1;

t

2

i

+ t

i

+ �

i

z + 

i

= 0; i = j; : : : ;m� 1

de�ning the extension L=K(z) as well. All left hand sides of these equations must

be irreducible due to the choice of m and hence we must have �

i

6= 0, since K is
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algebraically closed in F , by Lemma 6. Because of this also being true for the next

intermediate �

i

, we can carry out the following transformations:

By substituting t

j

+ (�

j

=�

1

)

1=2

t

1

for t

j

and using the above equation with i = 1

we obtain

t

2

j

+ t

j

+

 

�

�

j

�

1

�

1=2

+

�

j

�

1

!

t

1

+

�

j

�

1



1

+ 

j

= 0;

wherein we write �

j

for the coe�cient of t

1

and 

j

for the constant term. Next, we

use the equation for i = 2 to eliminate t

1

in the same way as was done with z = t

0

,

and we repeat this for t

2

; t

3

; :::; t

j�2

; we eventually arrive at

t

2

j

+ t

j

+ �

j

t

j�1

+ 

j

= 0;

as desired. By induction we go on until j = m.

Next, by expressing z = (t

2

1

+ t

1

+ 

1

)=�

1

, t

1

= (t

2

2

+ t

2

+ 

2

)=�

2

, and so on, we

obtain z = �

�1

+

P

m�1

i=0

�

i

c

2

i

with c = t

m�1

and suitable �

i

2 K. Since L=K(z) is

separable and [L : K(z)] = 2

m�1

, we �nally see that �

0

; �

m�1

6= 0.

To estimate the genus of our function �eld we shall use the following theorem,

which is a special case of [18, Proposition III.7.8, pp. 115]:

Theorem 8. Let L=K denote a rational algebraic function �eld of characteristic

two. Suppose that u 2 L is an element which satis�es the following condition:

u 6= w

2

+w for all w 2 L:

Let F = L(y) with y

2

+ y = u. For a place P of L we de�ne the integer m

P

by

m

P

=

8

>

>

<

>

>

:

m

if there is an element z 2 L such that

v

P

(u + (z

2

+ z)) = �m < 0 and m 6� 0 (mod p)

�1 if v

P

(u+ (z

2

+ z)) � 0 for some z 2 L:

If at least one place Q of L satis�es m

Q

> 0 then K is algebraically closed in F ,

and

g =

1

2

 

�2 +

X

P

(m

P

+ 1) degP

!

;

where g is the genus of F .

Lemma 9. F=K is a hyperelliptic function �eld of genus 2

m�1

or genus 2

m�1

� 1

over the exact constant �eld K.

Proof. The constant �eld statement is proved in Lemma6. Recall, we have F = F

0

L

and [F : L] = 2. Hence, the hyperellipticity is clear, since L is rational by Lemma 7.

Next we prove the genus statement. In order to obtain F from L we need to

adjoin to L a root of the left hand side of the 0-th equation de�ning F. We take a

closer look at the constant term (in s

0

) of this equation u = 1=z + �

0

+ �

1=2

0

z 2 L,

where we think of z as a polynomial in c of degree 2

m�1

as in Lemma 7.

Since this polynomial is separable, it factors in K[c] into irreducible polynomials

with all multiplicities equal to one. The valuations v

P

(u) of u at the places P above

z = 0 of the rational function �eld L (i.e. those places satisfying v

P

(z) > 0) are

thus all �1 and we obtain m

P

= 1. We additionally know

P

v

P

(z)=0

degP = 2

m�1

,

this is easily seen as we are working in a rational function �eld.
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We now consider the degree valuation 1 of L = K(c). Since z = �

�1

+

P

m�1

i=0

�

i

c

2

i

there are ~u; v 2 K[c] such that �

1=2

0

z = ~u+v

2

+v and deg(~u) � 1. The

polynomial v can be obtained e. g. by successively eliminating leading terms using

elements of the form (�c)

2

i

+ (�c)

2

i�1

. Thus v

1

(u+ v

2

+ v) � �1 and m

1

= 1 or

m

1

= �1.

The remaining places P of L have v

P

(u) = 0 hence m

P

= �1. Summing up,

using Theorem 8, we �nally obtain g = 2

m�1

or g = 2

m�1

� 1.

3.4. Restriction to smaller constant �eld. Up to now we have used the Artin-

Schreier nature of the equations de�ning D (resp. F) in an essential way, in order

to obtain the statements on the hyperellipticity and the genus. Next, we need to

restrict to a smaller constant �eld, and here we will use the existence of a Frobenius

automorphism on F which is due to the very construction of D.

Lemma 10. The Frobenius automorphism � of K over k extends (non uniquely)

to a k-automorphism on F of order n or 2n, again denoted by �.

We have roots �s

i

= �

i

(�s

0

) of the left hand sides of F and accordingly roots

�w

i

= �

i

( �w

0

) of the left hand sides of D with �w

i

= x�s

i

+ �

1=2

i

for all 0 � i � n� 1.

Proof. The Frobenius automorphism � extends to a k-automorphism of K(x) =

K(z) by leaving x, resp. z, �xed.

The �eld F is obtained from K(z) by successively adjoining roots �s

i

for 0 � i �

m� 1 of the left hand sides of F to K(z). Once these m roots �s

i

are adjoined roots

�s

i

of the other equations for m � i � n � 1 are readily to be found in F and �

will be de�ned on them. For m = 1 we can simply de�ne �(�s

0

) = �s

0

. Assume we

have m > 1 and � : K(z)(�s

0

; : : : ; �s

i�1

) ! F for an i with 0 � i < m � 1. We can

extend � to K(z)(�s

0

; : : : ; �s

i

) ! F by choosing �(�s

i

) = �s

i+1

because the left hand

side of the i-th equation of F is irreducible over K(z)(�s

0

; : : : ; �s

i�1

) and applying �

to z

�1

+ �

i

+ �

i

z gives z

�1

+ �

i+1

+ �

i+1

z. Hence we can extend � to the whole

of F by de�ning � on �s

i

for 0 � i � m � 1.

The order of any such � on F must be a multiple of n since K � F and � has

order n on K. Furthermore, �

n

(�s

0

) = �s

0

or �

n

(�s

0

) = �s

0

+ 1 because �

n

(�s

0

) must

be a root of the left hand side of the �rst equation of F. We conclude that the order

of � on F will be n or 2n accordingly.

The statement on the roots is clear and serves primarily as a de�nition for later

use.

It is at this point that condition (y) becomes important.

Lemma 11. If condition (y) is satis�ed then the extension � in Lemma 10 of the

Frobenius to F can be chosen with order exactly n on F .

Proof. We now need to derive a precise condition for the order of such extensions

�. It will turn out that we have to carefully choose a particular extension � if we

want to obtain order n. The precise condition will be obtained from the precise

value of �

n

(�s

0

), and is then compared to condition (y).

To begin with we start with any extension � of the Frobenius to F which will be

changed later as required. It is convenient to employ the following technique: For

f(t

�

) =

P

i

d

i

t

i

�

2 F

2

[t

�

] we de�ne f(t

�

)s =

P

i

d

i

�

i

(s) where s 2 F arbitrarily,

thereby turning F

+

into an F

2

[t

�

]-module. As a subgroup K

+

inherits this F

2

[t

�

]-

module structure which is compatible with the F

2

[t]-module structure of K

+

used

in the proof of Lemma 5 under the relation t

�

= t

r

for r = log

2

(q).
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We let f

�

0

(t

�

) be the polynomial of smallest degree such that f

�

0

(t

�

)�

0

= 0 and

set

f(t

�

) =

�

f

�

0

(t

�

) for deg f

�

0

(t

�

) even;

(t

�

+ 1)f

�

0

(t

�

) otherwise.

The same polynomials f

�

0

and f are obtained upon replacing �

0

with �

1=2

0

. From

Lemma 6 and its proof it is easily seen that deg f(t

�

) = m.

Since (t

n

�

+ 1)�

0

= 0 there is an h(t

�

) 2 F

2

[t

�

] such that h(t

�

)f(t

�

) = t

n

�

+ 1.

We have

�

f(t

�

)�s

0

�

2

+ f(t

�

)�s

0

= f(t

�

)

�

�s

2

0

+ �s

0

�

= f(t

�

)

�

z

�1

+ �

0

+ �

1=2

0

z

�

= f(t

�

)�

0

:

Now, as f(1) = 0, we can apply Lemma 5 to the last right hand side above and �nd

a v 2 K with v

2

+v = f(t

�

)�

0

. Here we actually have a choice between v and v+1

which will be important later. Adding v

2

+ v to the �rst left hand side above we

obtain f(t

�

)�s

0

+ v 2 f0; 1g. It is now that we have to choose the correct extension

of �, depending on the choice of v: If we have f(t

�

)�s

0

+ v = 1 we replace � by a

�

0

which satis�es �

0

(�s

i

) = �(�s

i

) for 0 � i < m � 1 and �

0

(�s

m�1

) = �(�s

m�1

) + 1,

which we can do according to the extension process at the beginning of the proof.

Since the leading term of f(t

�

) is t

m

�

and �s

m�1

= �

m�1

(�s

0

) we can hence assume

f(t

�

)�s

0

+ v = 0:(4)

Multiplying this with h(t

�

) yields (t

n

�

+ 1)�s

0

+ h(t

�

)v = 0 from which we draw the

conclusion: � has order n on F if and only if h(t

�

)v = 0. The rest of the proof

deals with the relation of this condition and (y), and the suitable choice of v.

Using the proof of Lemma 5 and the above compatibility remark we see that we

can choose between v = f(t

r

)=(t+1)�

0

and v = f(t

r

)=(t+1)�

0

+1. Multiplying the

�rst v with h(t

r

) we obtain h(t

r

)f(t

r

)=(t+1)�

0

= (t

rn

+1)=(t+1)�

0

= Tr

K=F

2

(�

0

).

Thus, depending on the choice of v,

h(t

�

)v =

�

Tr

K=F

2

(�

0

) or

Tr

K=F

2

(�

0

) + h(1):

(5)

Our k-automorphism � on F , depending on v, has order n if and only if we obtain

zero for at least for one of the cases in the right hand side of (5). But this is implied

by (y): The case Tr

K=F

2

(�

0

) = 0 is clear. For n odd we obtain h(1) = 1 because

t

�

+ 1 divides t

n

�

+ 1 only once. For n = m we obtain h(t

�

) = 1 hence h(1) = 1

too.

We remark that the conditions (y) are su�cient but not necessary for the exis-

tence of an extension of the Frobenius automorphismofK=k to F of order n. Precise

conditions can be derived from (5) and may be summarised as follows: \ The ex-

tension exists either for all � 2 K or only for those � 2 K with Tr

K=F

2

(�) = 0,

given any �xed � 2 K

�

".

Theorem 12. Let � be an extension of the Frobenius automorphism of K=k to F ,

having order n, and let F

0

be the �eld of elements of F �xed by �. The �eld F

0

is a hyperelliptic function �eld of genus 2

m�1

or 2

m�1

� 1 over the exact constant

�eld k. The curve C has an irreducible reduced component having F

0

as its function

�eld.
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k

n

1

@

@

@

@

@

K k(x)

2

m�1

1

n

@

@

@

@

K(x)

K(E)

@

@

@

@

�

�

�

�

2

L

2

m�1

L

0

@

@

@

@

@

2

n

F

2

F

0

@

@

@

@

n

Figure 1. Lattice Diagram of Fields

Such a k-automorphism � exists if the condition (y) is satis�ed.

Proof. We let L

0

= F

0

\ L. The relations between the �elds F; F

0

; L and L

0

are

described by Figure 1.

The �xed �eld F

0

of � has index n in F because � is of order n on F and it is

clear that F

0

\K = k holds because � is of order n on K as well.

The automorphism � restricts to a k-automorphism of L of order n because it

is the unique sub�eld of F of index 2 and K � L. Thus, [L : L

0

] = n, since L

0

is

the �xed �eld of � restricted to L and we obtain [F

0

: L

0

] = 2, as desired. Clearly

F = F

0

K (and also L = L

0

K) which gives the genus statement.

From the �w

i

we obtain n, not necessarily distinct, elements �y

i

via the linear

transformation of Lemma 2. The automorphism � operates cyclically on the �w

i

so

that we have �(�y

i

) = �y

i

, as was proved generically in Lemma 2. The �y

i

are thus in

F

0

and together with x they generate F

0

over k (because the �w

i

can be obtained

from the �y

i

over K). Due to Lemma 2 the �y

i

satisfy the equations of C, from which

we �nally see that C has an irreducible reduced component with function �eld F

0

(we can for example again use the kernel technique from the proof of Lemma 3).

The existence of � under condition (y) was proved in Lemma 11.

Note, that if condition (y) is not satis�ed and � has order 2n, then we could

have F

0

= L

0

in the arguments of the proof of Theorem 12, and hence we could not

guarantee �nding a curve de�ned over k which is hyperelliptic and has genus 2

m�1

or 2

m�1

� 1.

If the value of m is too small then none of the irreducible components of C will

have a Jacobian which contains a subvariety isogenous to the subvariety B of A.
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For example, let E(F

q

n

) denote a Koblitz curve, i.e. one de�ned over the �eld F

2

.

We will then obtain irreducible components of C of genus one, by the de�nition of

m. In this case, the Weil restriction A factors as the product

A = E(F

q

) �B

where B is an n� 1-dimensional abelian variety de�ned over F

q

. The curve in the

Weil restriction we have constructed has irreducible components whose Jacobians

are isogenous to E(F

q

) and so we obtain no information about the subvariety B

from our curves. This does not mean that one cannot �nd useful curves in A,

whose Jacobian contains a subvariety isogenous to B. It just means that the curves

we have constructed are not useful in this context. This is why we have assumed

throughout that E is not de�ned over a proper sub�eld of K.

In view of Theorem 12 and Lemma 11 we assume for the rest of Section 3 that

we are given an extension � of the Frobenius automorphism of K=k on F of order

n and that � operates cyclically on the �s

i

and �w

i

while leaving x and z �xed. This

can be reached when the condition (y) is ful�lled.

3.5. Determination of an explicit model for F and F

0

. We describe how to

obtain Artin-Schreier equations de�ning F over L and F

0

over L

0

. The correspond-

ing hyperelliptic equations are easily obtained by similar (reversed) transformations

as done in the beginning of Section 3.2.

To compute an Artin-Schreier equation in s

0

and c for F over L for the generators

�s

0

2 K(E) � F and c 2 L, we only need to substitute

�

�

�1

+

P

m�1

i=0

�

i

c

2

i

�

�1

for z

in the �rst equation s

2

0

+ s

0

+ z

�1

+ �

0

+ �

1=2

0

z = 0 of F, due to Lemma 7.

In order to determine the action of � on F we need to compute �

i

(c) and �

i

(�s

0

)

for 0 � i � n� 1 as expressions in c and �s

0

. This can be done using the operation

of � as given in (4) and by tracing back the transformations of Lemma 7. Note

that c is a K-linear combination of z and the �

i

(�s

0

) for 0 � i � m � 1 and that

each of these can in return be expressed in c (z = f(c) resp. �

i

(�s

0

) = f

i

(c) + �s

0

for

suitable f; f

i

2 K[c]).

Given c and �s

0

and the action of � on c and �s

0

we can explicitly construct F

0

and L

0

as follows:

Lemma 13. Choose � 2 K such that Tr

K=k

(�) = 1 and set ~c = Tr

L=L

0
(��

0

c),

~s = Tr

F=F

0
(��s

0

). We then have L

0

= k(~c) and F

0

= k(~s; ~c). An Artin-Schreier

equation de�ning the �eld F

0

over L

0

is given by

~s

2

+ ~s+ 1=z +Tr

K=k

(�

2

�) + Tr

K=k

(�

2

�

1=2

) z(6)

+

�

Tr

F=F

0
(�

2

�s

0

) + Tr

F=F

0
(��s

0

)

�

= 0;

where the absolute coe�cient in ~s of the left hand side of this equation, the element

z and hence the last line Tr

F=F

0
(�

2

�s

0

) + Tr

F=F

0
(��s

0

) are in L

0

.

Proof. From the extension structure L=K(z), because z = �

�1

+

P

m�1

i=0

�

i

c

2

i

and

�(z) = z, it is clear that � maps poles of c to poles of c. Since L is rational we see
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that there are �; �

0

2 K such that �(c) = �c+ �

0

. Then

�(z) = �

 

�

�1

+

m�1

X

i=0

�

i

c

2

i

!

= �(�

�1

) +

m�1

X

i=0

�(�

i

)

�

�

02

i

+ �

2

i

c

2

i

�

:

On equating coe�cients in �(z) = z, we obtain for i � 0

�(�

i

)�

2

i

= �

i

:

For i = 0 we thus obtain

�(�

0

c) = �(�

0

)(�c + �

0

) = �

0

c + �(�

0

)�

0

:

Now from this ~c = Tr

L=L

0
(��

0

c) = �

0

c+ �

00

for some �

00

2 K and thus L

0

= k(~c).

Consider the Galois group of F=K(z). According to Lemma 6 it is an elementary

abelian 2-group whose elements send each �

i

(�s

0

) to �

i

(�s

0

) or �

i

(�s

0

) + 1. Now let

� be the hyperelliptic involution on F=L, being an element of this Galois group.

Since � �xes L and any of the �

i

(�s

0

) generates F over L we must have � (�

i

(�s

0

)) =

�

i

(�s

0

) + 1 = �

i

(� (�s

0

)) for all i. We thus see that � and � commute in their action

on F and that hence � operates by restriction on F

0

=L

0

. We again consider the

equations de�ning F. Using Tr

K=k

(�) = 1 we obtain � (~s) = ~s + 1 and

Tr

F

0

=L

0
(~s) = ~s+ � (~s) = 1:

Using

~s

2

= Tr

F=F

0
(�

2

�s

2

0

) = Tr

F=F

0
(�

2

(�s

0

+ 1=z + �+ �

1=2

z))

we obtain for the norm

N

F

0

=L

0
(~s) = ~s(~s + 1)

= 1=z + Tr

K=k

(�

2

�) + Tr

K=k

(�

2

�

1=2

) z

+

�

Tr

F=F

0(�

2

�s

0

) + Tr

F=F

0(��s

0

)

�

:

Putting together we thus arrive at equation (6). This equation is separable in ~s,

and by construction it has coe�cients in L

0

. Looking at the equations de�ning F

gives that the valuation of �s

i

at the zeros of z is only half the valuation of 1=z. The

term in the second line of (6) is a K-linear combination of the �s

i

and, as element

of L

0

, has therefore no poles except at ~c =1. It is hence a polynomial in ~c and we

can conclude that the left hand side of (6) is indeed irreducible.

The elements ~s and ~c can be computed in F using �. The absolute coe�cient

in equation (6) is �rst computed in K(c) and lies in k(~c) after substituting c =

(~c+ �

00

)=�

0

.

We let �y = x�s

0

+ �

1=2

and ~y = Tr

F=F

0
(��y) so that ~y = x~s + Tr

K=k

(��

1=2

). In

the case of odd n we can choose � = 1 and obtain the equation

~y

2

+ x~y + x

3

+Tr

K=k

(�)x

2

+ Tr

K=k

(�) = 0;

for x the inverse of the separable polynomial �

�1

+

P

m�1

i=0

�

i

((~c+ �

00

)=�

0

)

2

i

2 k[~c].

We remark that in this case the genus of F

0

=k is 2

m�1

� 1 if Tr

K=k

(�) = 0.
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3.6. Mapping the discrete logarithm problem. We next address the question

of mapping the discrete logarithm problem from E to F

0

, where we again use the

function �eld setting. We let Cl

0

(K(E)) denote the group of divisor classes of

degree zero of the function �eld K(E) of E, and similarly for Cl

0

(F ). The divisor

class of the divisor D is written [D].

The conorm Con

F=K(E)

and norm N

F=F

0
maps we de�ne as in [5, pp. 65] (cf. [18,

pp. 63 and 239]), on recalling that F is a function �eld extension of both K(E)

and F

0

. Both conorm and norm are homomorphisms of divisor groups, are well

de�ned on divisor classes and map divisor classes of degree zero to divisor classes

of degree zero.

The point group E(K) of the elliptic curve E is isomorphic to the group of

divisor classes of degree zero of K(E) [16, p. 66, Prop. 3.4]. The mapping of

the discrete logarithm problem in the point group E(K) of E is then achieved as

follows: First we translate the problem into Cl

0

(K(E)). From there we use the

conorm Con

F=K(E)

in order to map it to Cl

0

(F ), and from there, using the norm

N

F=F

0
, to Cl

0

(F

0

). On composition we thus obtain a group homomorphism

� : E(K)! Cl

0

(F

0

):

The important question now is whether the large cyclic factor of E(K) of order

p is preserved by this homomorphism.

Lemma 14. The kernel of Con

F=K(E)

: Cl

0

(K(E)) ! Cl

0

(F ) can only consist of

2-power torsion elements of Cl

0

(K(E)).

Proof. Let D be a degree zero divisor of K(E). We have according to [5, pp. 66,

line 21] that

N

F=K(E)

(Con

F=K(E)

(D)) = [F : K(E)]D:

Thus, if Con

F=K(E)

(D) is principal, then [F : K(E)]D is also principal. But [F :

K(E)] = 2

m�1

which means that [D] has 2-power order.

According to the lemma the large cyclic factor can only be mapped to zero under

� by the norm N

F=F

0
.

For very small values of m, such as those obtained for Koblitz curves, the kernel

of � will necessarily be divisible by the large prime p. But if m is larger than

log

2

(n), then the large prime factor of the order of E(K) will be preserved in many

instances. Hence, to solve our discrete logarithm problem

P

2

= [l]P

1

on E(K) we map degree zero divisor classes representing P

2

and P

1

over to Cl

0

(F

0

)

using the map �. Set D

1

= �(P

1

) and D

2

= �(P

2

). If we do not obtain D

1

= D

2

=

0, which in practice is unlikely unless the elliptic curve is actually de�ned over a

sub�eld of K, we can attempt to solve the discrete logarithm problem

D

2

= [l]D

1

in Cl

0

(F

0

).

The computation of images under � is in principle feasible by general methods,

such as those used for computations with algebraic number �elds and their exten-

sions. Nevertheless, we want to give some rough indications on a method for our

case. We assume that we can compute su�ciently well with �nite �elds and that

we can de�ne the function �eld of an irreducible a�ne plane curve, that we can
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compute the decomposition into places of the principal divisor of an element and

of e�ective divisors and that we can evaluate elements at places.

Let P

1

be a place of K(E) of degree one where x; y 2 K(E) take the values

x(P

1

); y(P

1

) 2 K respectively (we assume for simplicity that x(P

1

) 6= 0;1). The

place P

1

is clearly the unique common zero of x + x(P

1

) 2 K(E) and y + y(P

1

) 2

K(E). Then Con

F=K(E)

(P

1

) can be computed as the greatest common divisor of

the numerators of the principal divisors

�

x + x(P

1

)

�

and

�

y + y(P

1

)

�

taken in F .

It is a divisor of degree 2

m�1

according to [5, pp. 65, Lemma 1].

Let P be a place of F dividing Con

F=K(E)

(P

1

) for some place P

1

of K(E) of

degree one (we decompose Con

F=K(E)

(P

1

) to compute P ). The place L \ P can

be described as the numerator of

�

f(~c)

�

, where f is the minimal polynomial of

~c(P ) over K and the principal divisor is taken in L. This is possible as ~c has

no pole at P because x(P ) = x(P

1

) 6= 0, which we have assumed above (~c and

~y are de�ned after Lemma 13 and given as elements of F and generators of F

0

).

The place P can similarly be given as follows: Let h be a bivariate polynomial

over K such that h(�; ~c(P )) is the minimal polynomial of ~y(P ) over K(~c(P )). ~y

is de�ned at P because all of the �

i

(�y) are as x(P ) 6= 1. We may represent

P as the the greatest common divisor of the numerators of

�

f(~c)

�

and

�

h(~y; ~c)

�

,

where the principal divisors are taken in F . This divisor consists of only P without

multiplicities because as x(P

1

) 6= 0 we have that L \ P is unrami�ed in F , hence

there are at most two places in the numerator of

�

f(~c)

�

and each of them occurs

with multiplicity one. Furthermore, if the other place Q 6= P above L \ P exists

then h(�; ~c) has degree one as the residue class degree of P over L \ P is one. We

also obtain ~y(Q) = ~y(P ) + x(P ) 6= ~y(P ) and h(~y(Q); ~c(Q)) 6= 0, hence Q does not

occur in the numerator of

�

h(~y; ~c)

�

(cf. [18, p. 76, Thm. III.3.7.] and its proof, h

is one of the '

i

and ' is the minimal polynomial of ~y over K(~c)). We are actually

interested in determining the underlying place P

0

= F

0

\ P of F

0

, so we need to

express the situation with coe�cients in k rather than K.

For this we simply compute minimal polynomials

~

f ;

~

h as above, but over k in-

stead, and compute P

0

as the greatest common divisor of the numerators of

�

~

f (~c)

�

and

�

~

h(~y; ~c)

�

, where the principal divisors are now taken in F

0

. This divisor consists

of only P

0

without multiplicities because of the same reasons as above.

Finally, N

F=F

0
(P ) = f(P; P

0

)P

0

where f(P; P

0

) = n deg(P )= deg(P

0

) is the

residue class degree of P over P

0

. We will have that N

F=F

0
(Con

F=K(E)

(P

1

)) is

e�ective and that its degree equals n2

m�1

, for the later taking [5, pp. 66, Lemma 2]

and its proof into account.

A program for computing F

0

and � given E has been written in KASH and is

planned to be written for inclusion in the Magma computer algebra system.

4. Constructing Hyperelliptic Cryptosystems

Our method for constructing hyperelliptic cryptosystems is now immediate.

1. Fix a �eld k = F

q

and an integer n such that K = F

q

n

.

2. Choose an E over K of order 2

l

p where p is a prime and l is a small integer.

This can be achieved by generating curves at random and computing their

group orders using the algorithm of Schoof [15].

3. Construct the Weil restriction and the curve C as we did in Section 3.

4. Find a model H of an irreducible component of C in hyperelliptic form.

5. Check that the divisor class group of H over k has a subgroup of order p.
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The �nal condition is necessary since we only know that a subvariety of A is isoge-

nous to a subvariety of the Jacobian of H. Clearly in step 2 we should only choose

curves for which condition (y) will automatically hold, i.e. n odd or Tr

K=F

2

(�) = 0.

If in the above algorithm we choose n = 4, b

3

= b

0

+ b

1

+ b

2

, with the special

examples of Section 2, we will expect to obtain a hyperelliptic curve of genus 3 or

4, de�ned over k, whose Jacobian will, in general, have order 2

l

p. If l is chosen

small then we do not expect to obtain genus 3. If we choose n = 2, and a very

small value for l, then we expect to obtain a hyperelliptic curve of genus 2, de�ned

over k, whose Jacobian has order divisible by p.

4.1. Genus Four Example. We consider an example where p � 2

80

. Clearly this

is not large enough for cryptographic use, but we use it for illustrative purposes,

both here and later. Curves with p > 2

160

are just as easy to produce, they just

require more paper to write down.

Consider the �eld k = F

2

21
generated over F

2

by a root of the polynomial:

w

21

+w

2

+ 1:

Let K = F

2

84
be generated over k by a root of the polynomial

�

4

+ �

3

+ �

2

+ � + 1:

We construct the elliptic curve

E : Y

2

+XY = X

3

+ b

0

� + b

1

�

2

+ b

2

�

4

+ b

3

�

8

where

b

0

= 0; b

1

= w

1127280

; b

2

= w

171398

; b

3

= w

1370436

:

Notice that b

3

= b

0

+ b

1

+ b

2

, and so we expect to obtain a hyperelliptic curve of

genus four. The order of E(K) is computed using the algorithm of Schoof [15] and

it is equal to 2

4

p, where

p = 1208925819614311295169073:

Our algorithm for producing a curve of genus four in the Weil restriction produces

the curve C

4a

, of Section 2. This curve has Jacobian also of order 2

4

p. But the

curve C

4a

is birationally equivalent to the following hyperelliptic curve, which we

calculated using the method in Section 3,

H : Y

2

+G(X)Y + F (X) = 0(7)

where G(x) is given by

X

4

+w

624429

X

3

+ w

1248858

X

2

+w

1442662

X +w

386860

and F (X) is given by

X

9

+ w

1859582

X

6

+ w

293124

X

4

+ w

1783647

X

3

+ w

1541982

X

2

+ w

1370912

X + w

1888298

:
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4.2. Genus Two Example. We construct an elliptic curve over the �eld K =

F

2

162
with group order equal to

5846006549323611672814739995379292203636332479268

which is four times a prime, p. We do not give the details of this elliptic curve here

for reasons of space. The Weil restriction, and our construction of the associated

hyperelliptic curves, produces the following example of a genus two hyperelliptic

curve de�ned over k = F

2

81
.

De�ne k by k = F

2

[w]=(1 + w

4

+ w

81

). The Jacobian of the hyperelliptic curve

of genus two given by

H : Y

2

+ (X

2

+w

2012013793551629036365609

X)Y

= X

5

+X

4

+w

1586464037343056940725724

X

2

+w

43334222987849600951547

X +w

774788345987798314632240

has order divisible by p. Its group structure is given by C

2

� C

2p

and it is not

subject to the Tate-pairing attack [8] since p does not divide q

k

�1 for small values

of k.

Notice, that if the original elliptic curve E(F

q

n

) resists the Tate pairing attack,

i.e. there does not exist a small value of k for which q

nk

� 1 � 1 (mod p), then the

analogous test for the Jacobian is obviously satis�ed for small values of k.

5. Attacking Elliptic Curve Cryptosystems

The question remains as to whether the above construction provides either a

mechanism to attack elliptic curve cryptosystems or whether the hyperelliptic cryp-

tosystems proposed above are strong. In this section we discuss the di�culty of

solving the discrete logarithm problem in the Picard group of the hyperelliptic

curves we have constructed. We shall assume a �xed, small, value of n and we look

at the situation as q tends to in�nity.

For any group, the rho method (with Pohlig-Hellman) provides an algorithm

for computing the discrete logarithm in time O(

p

p) where p is the largest prime

factor of the order of the group. For general elliptic curves, this is the best known

algorithm. For the curves de�ned over F

q

n

considered in this paper we obtain a

complexity of O(q

n=2

) in general.

For hyperelliptic curves, we can obtain a better complexity by using an index-

calculus method. If the curve is de�ned over F

q

and the genus is not too high (say

at most 8), we can proceed as follows. We consider a factor base containing all the

prime divisors of the Jacobian of degree one. We can then proceed in two phases. In

the �rst phase, relations are found between the elements of the factor base, whilst

in the second phase we perform sparse linear algebra to solve the original discrete

logarithm problem. The details of this algorithm are in [10], but we give some

details in an example below.

Theorem 15 (Gaudry [10]). There is an index calculus style algorithm to solve

the hyperelliptic discrete logarithm problem in a hyperelliptic curve of genus g over

the �eld F

q

which requires a factor base of size O(q) and which runs in time

O

�

g

3

g!q log



q

�

+O

�

g

3

q

2

log



q

�

for some �xed integer .
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Hence, for �xed values of g the complexity of this algorithm is O(q

2+�

), which

is better than the rho method for a (almost) cyclic Jacobian of genus at least 5.

However, it is unclear where the exact crossover point between the method of [10]

and the rho method lies.

The theoretical complexity can be improved by reducing the size of the factor

base. The smoothness bound is already minimal, but we can decide that some

of the prime divisors of degree one are `good' (we keep them in the factor base),

whereas others are rejected. If we set the proportion of `good' divisors to 1=l, then

the time for �nding a relation will be increased by a factor l

g

. However, we will

need l times less such relations, and the cost of the linear algebra will be reduced by

a factor 1=l

2

. If we try to optimise the choice of l, we obtain l = �((q=g!)

1=(g+1)

)

and the complexity becomes O(q

2g

g+1

+�

), as q!1.

In the following table we give the complexities of the discrete logarithm problem

on the elliptic curves studied in the previous sections and on the corresponding

Jacobians. We only look at the genera which are likely to occur in practice for the

example curves in Section 2 and we ignore the q

�

term in the complexity estimate.

Notice that for the `interesting' subvariety of Jac(C) in our Weil-descent examples

the complexity of the rho method on Jac(C) is equal to the complexity of the

rho method on E(F

q

n

). For a general Jacobian of genus g the rho method has

complexity O(q

g=2

).

Example Curve C

2

C

3

C

3

C

4

C

4

C

4a

n, g 2,2 3,3 3,4 4,8 4,7 4,4

rho on E(F

q

n

) q q

3=2

q

3=2

q

2

q

2

q

2

Index on Jac(C) q

4=3

q

3=2

q

8=5

q

16=9

q

7=4

q

8=5

We stress that these complexities hold as q tends to in�nity and with n and g �xed.

Hence, for g � 4 we obtain a complexity which is better than that of Pollard rho.

In a context where we would like to build a hyperelliptic cryptosystem by a Weil

descent, the Jacobians have to be almost cyclic, which occurs for the cases C

2

, C

3

and C

4a

. For the �rst two, this seems to be a good way to build a cryptosystem

in genus two or three; however, for the last one the index-calculus provides an

attack with a better theoretical complexity than the rho method, and the security

is asymptotically lower than with an elliptic curve cryptosystem with the same key

size.

On the other hand, if we want to attack an elliptic curve cryptosystem, we

see that for C

4

and C

4a

the complexity of index-calculus is better than for the

rho method. Thus, asymptotically, it is a good way to attack such elliptic curve

cryptosystems by transferring the problem to a hyperelliptic curve.

However, experiments have to be done for each �xed value of n and g to see where

is the crossover between the two attacks, since the group operations in E(F

q

n

) and

in Jac(C) will have di�erent complexities. Such an experiment is carried out in the

next section.

6. Solving a Hyperelliptic DLOG Problem

It is important to decide, not only for the Weil descent attack but also for our

construction of hyperelliptic cryptosystems in genus four, whether the method of

[10] is practical in genus four. In this section we consider the example given by
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the curve in equation (7). The �elds size is q = 2

21

and the curve has genus 4,

so the Jacobian has size approximately 2

84

. We will solve a discrete logarithm

problem in this group using the method of [10] and then compare the running time

to known e�cient implementations of the rho method in an elliptic curve group of

the same size. Since the rho method applied to a hyperelliptic curve will run slower

than on an equivalently sized elliptic curve, if the method of [10] runs faster on the

hyperelliptic curve compared to rho on an elliptic curve we will know that

� Genus four systems are less secure than the equivalent elliptic curve system,

for �eld sizes greater than 2

21

. We would then conclude that genus four

hyperelliptic systems should not be deployed in real life.

� Elliptic curves de�ned over F

q

n

, with m = 3 and q = 2

t

, are weaker than

those de�ned over F

2

p

with p prime and of the order of nt.

We attempted to solve the discrete logarithm problem given by

D

2

= [l]D

1

where

D

1

= (X

4

+ w

1277131

X

3

+ w

1087066

X

2

+w

1391819

X +w

1964994

;

w

1784094

X

3

+ w

131164

X

2

+w

1975559

X +w

2073352

);

D

2

= (X

4

+ w

895988

X

3

+w

1765969

X

2

+ w

1667155

X + w

1531893

;

w

110642

X

3

+w

2014036

X

2

+w

927941

X + w

1063447

);

where the divisors are given in the reduced representation as in the paper by Cantor

[4]. In this notation, the point at in�nity is implicitly subtracted with the correct

multiplicity in order to obtain a divisor of degree zero. The above divisor D

1

is a

generator of the subgroup of prime order p � 2

80

.

The factor base consists of all prime divisors of the form

p = (X + �; �)

where �; � 2 k = F

q

, and

�

2

+ G(�)� + F (�) = 0:

To each � there are two corresponding values of �, but we only choose one of these

to be in our factor base, since the two prime divisors are related by the equation:

(X + �; �) + (X + �;G(�) + �) � 0;

in the divisor class group.

To reduce the factor base even further we only use divisors in the factor base

such that the binary representation of � has a bit representation with its three most

signi�cant bits set of zero. Where the bit representation is in the polynomial basis

with respect to w. Such prime divisors will be called `good'. In our example the

number of such good divisors which make up our factor base F is 131294.

Consider the following general reduced divisor

D = (a(X); b(X))

with deg b < deg a � g. A necessary condition for this divisor to factor over our

factor base of `good' divisors will be for the binary representation of a

deg a�1

, the

(deg a� 1)th coe�cient of a(X), to have its three most signi�cant bits set to zero.

This gives us a simple test to eliminate lots of divisors which are not smooth over

our set of good divisors.
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The algorithm proceeds as follows. We compute a set of `random' multipliers

M

i

= [r

i

]D

1

+ [s

i

]D

2

; for 1 � i � 20;

for some random integers r

i

and s

i

. Then setting R

1

= M

1

, say, we compute the

following random walk

R

i+1

= R

i

+M

h(R

i

)

where h : Jac(H) ! [1; : : : ; 20] is some hash function. Notice that every value R

i

can be written as

R

i

= [a

i

]D

1

+ [b

i

]D

2

:

We then try to `factor' R

i

over our factor base to obtain a relation of the form

R

i

=

X

p2F

[t

p

]p:

Due to our choice of factor base this factorisation can be achieved using root ex-

traction techniques over �nite �elds rather than general polynomial factoring tech-

niques. We eliminate many divisors, before we apply root extraction, by our test

for smoothness over the good divisors which we described above. The resulting t

p

lie in [�g; : : : ; g], where for our example g = 4. We store the t

p

in a matrix as

a column, which will have at most g non-zero entries in each column. Almost all

relations we obtain will have t

p

2 f�1; 0; 1g and will have exactly g non-zero values

of t

p

in each column.

After collecting more relations than elements in our factor base we can apply

sparse matrix techniques modulo p, such as the Lanczos method, to �nd a non-

trivial element in the kernel of the matrix. Using the element in the kernel we can

then �nd the solution to the original discrete logarithmproblem, with overwhelming

probability, in the standard manner.

We ran the above algorithm on the above example. The relation collection phase

took about two weeks of calendar time, using the idle time of a disparate set of

machines. If we had run this task on a single Pentium II 450 MHz, the timing would

have been about 31 weeks. The linear algebra step took 64:4 hours using the same

machine. After all this computation we determined the solution to D

2

= [l]D

1

was

given by

l = 12345678:

An equivalent calculation on an 84 bit elliptic curve, using Pollard's rho method,

would have taken 44 weeks on the same machine, with a program with a similar

level of optimisations applied. Since the crossover point is for a value of q less

than what would be used in practice, we can conclude that genus four hyperelliptic

systems are weaker than an elliptic curve system with the same size group order.

7. Other Types of Finite Fields

7.1. Non-composite Fields Of Even Characteristic. In Section 5 we looked

at what happens when n is �xed and we let q tend to in�nity. In practice the

elliptic curves over even characteristic �elds which are used are ones de�ned over

F

2

p

, with p a prime. Hence, we need to look at the situation where q is �xed and

n tends to in�nity.

Let E denote an elliptic curve, de�ned over F

2

p

where p is prime. We expect

that the methods of this paper would produce a hyperelliptic curve of genus 2

p�1
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over the �eld F

2

. It seems unlikely that one would, in general, be able to �nd a

curve of signi�cantly smaller genus in the Weil restriction of E(F

2

p

) over F

2

.

However, using equation (1) one may be able to �nd, in very special circum-

stances, certain elliptic curves which have values of m slightly larger than log

2

p,

for which there exist curves in the Weil restriction of genus slightly larger than p,

as the following example shows:

Consider K = F

2

[w]=(1 + w + w

127

) and the elliptic curve de�ned by (a; �) =

(0; w), i.e.

E : Y

2

+XY = X

3

+ w:

The number points on E(K) is computed to be

#E(F

2

127
) = 2

20

� 3

2

� 45615671 � 395232781659164075412101:

Along the arguments of Section 3 we computed its Weil restriction for n = 127

down to F

2

, obtaining the hyperelliptic curve

H : y

2

+ (x

128

+ x

64

+ x)y + x

128

+ x

64

+ x = 0:

The curve H has genus 127 and its Jacobian contains an element of order

#E(F

2

127
)=2:

We constructed this example by trying to makem as small as possible. It appears

that one can obtain very small values of m for � a zero of a polynomial with only

2-power coe�cients, in the above case �

128

+ �

2

+ � = 0. Another similar value for

� may be obtained by a zero of the irreducible factor of degree 127 of x

2

10

+x

2

+x

over F

2

.

In general, for random �, a small value of m is very unlikely as we shall now

show.

Lemma 16. We expect at least �fty percent of all the elliptic curves over K = F

2

p

,

for p prime to produce a value of m equal to p.

Proof. By a change of variables we can put our curve in the form

Y

2

+XY = X

3

+ �X

2

+ �

where � = 0 or 1 and � 2 K. Now by the de�nition ofm in (1), if f�; �

2

; : : : ; �

2

p�1

g

is a normal basis of K over F

2

then m = p. But around �fty percent of all elements

of K generate a normal basis, as we shall now show.

By Lemma 3.69 and Theorem 3.73 of [12] the number of elements, � 2 K, which

generate a normal basis over F

2

is equal to

2

p

t

Y

i=1

(1� 2

�n

i

)

where n

i

denotes the degrees of the distinct monic irreducible factors of the poly-

nomial X

p

� 1 over F

2

. But by Theorem 2.47 of the same book we see that this is

equal to

�

2

(p�1)=d

� 1

�

d

= O(2

p�1

);

where d is the number of distinct factors of the polynomial X

p�1

+ X

p�2

+ � � �+

X + 1 over F

2

. Hence, around �fty percent of all elements in K generate a normal

basis.
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For general curves, where m = p and g = 2

p�1

, one needs to bear in mind that

although there is a sub-exponential algorithm for the discrete logarithm problem on

hyperelliptic curves of large genus, it is sub-exponential in the size of the Jacobian

which will be of the order of

2

g

= 2

2

p�1

:

But we are really aiming for a sub-exponential algorithm in the size of the original

elliptic curve, which is 2

p

. On the other hand, for the very special elliptic curve in

the above example, we indeed obtain a possible subexponential attack. Note that

the method of [10] should not be used in this case since it is only e�cient for `small'

genera.

To obtain a sub-exponential algorithm for very large genera the methods from

[1, 9, 11, 13] should be combined after suitable modi�cation for our hyperelliptic

even characteristic case.

Hence, for curves de�ned over non-composite �elds of characteristic two, we do

not expect the techniques in this paper to contribute a signi�cant threat to elliptic

curve cryptosystems. This last statement holds assuming curves are either chosen

with values of m of the order of p, or are chosen to be curves which are de�ned over

F

2

, i.e. a Koblitz curve.

7.2. Odd Characteristic Fields. The question arises as to whether the process

of Weil descent can be applied to �elds of the form F

p

n

where p is an odd prime.

Clearly we must have n � 2 and by similar arguments to those above n should not

be too large.

The proofs in Section 3 relied heavily on the Artin-Schreier nature of the ex-

tensions. It appears hard to see how they can be modi�ed to apply in the odd

characteristic case. Indeed in the few examples we have calculated we see that the

resulting curves neither have such nice genera nor are they hyperelliptic in nature.

Hence, using odd characteristic �elds does not seem helpful in constructing higher

genus hyperelliptic cryptosystems.

Let us turn to attacking elliptic curve systems based on �elds of the form F

p

n

.

This is an open problem which we now outline with an example: Consider the �eld

F

p

3
= F

p

[t]=(t

3

+ 3491750t

2

+ 217412320t+ 795426309)

where p = 1073741839 = 2

30

+ 15. An elliptic curve de�ned over F

p

3
is given by

Y

2

= X

3

+ AX +B

where

A = 787621733t

2

+ 572191144t+ 6271705;

B = 167167209t

2

+ 739374709t+ 362095083:

For this curve it is easily veri�ed that the group order is

#E(F

p

3
) = 2

4

� 59 � 2261143 � 579962087855207501:

Setting

X = x

0

+ x

1

t+ x

2

t

2

and Y = y

0

+ y

1

t+ y

2

t

2

one can construct the Weil restriction.

Suppose the method of Gaudry could be extended to arbitrary Jacobians and

not just hyperelliptic Jacobians with almost prime group orders. This at �rst sight

does not seem too implausible but is the subject of ongoing research [6]. One would



WEIL DESCENT ON ELLIPTIC CURVES 25

expect the resulting algorithm to have complexity at best O(p

2g

g+1

). Hence, to beat

the asymptotic complexity of Pollard's rho method on E(F

p

3
) we would require a

curve of genus at most 3.

Naively mimicking our method of Weil descent in characteristic two one forms

the curve C de�ned by the hyperplanes x

1

= x

2

= 0, i.e. specialising to those

x-coordinates which are �xed under the Frobenius automorphism. The resulting

curve has genus 13 and is not hyperelliptic. Trying di�erent types of bases for F

p

3

over F

p

and di�erent hyperplanes does not appear to result in anything better.

This is an avenue for further work and the construction of a suitably well behaved

curve in the Weil restriction cannot be ruled out at present.

8. Conclusion

Let E(F

q

n

) denote an elliptic curve over a �eld of even characteristic, which is

not de�ned over a sub�eld of F

q

n

and which satis�es condition (y). Then we have

shown how the Weil restriction produces a hyperelliptic Jacobian of genus at most

2

n�1

which, for examples of cryptographic interest, contains a subgroup isomorphic

to a subgroup of E(F

q

n

).

Using this observation we can construct hyperelliptic cryptosystems by �rst con-

structing elliptic curves using the Schoof algorithm and then determining the asso-

ciated hyperelliptic curve. This appears to be a way to produce secure hyperelliptic

cryptosystems in genus two and three. We recommend against using this method

in genus four and above because of our experiment in solving discrete logarithm

problems in genus four, where we showed that the discrete logarithm problem in

the Jacobian of a curve of genus four was easier than on an elliptic curve of the

same group order, with a security level of at least 80 bits.

However, for �xed values of n � 4, this provides evidence for the weakness of the

original elliptic curve discrete logarithm problem. We have shown that for n = 4

and around 1=q of all such curves the crossover point, between our method and

Pollard rho, is at a value of q less than 2

21

. However, for larger �xed values of n,

say n = 11 or 13, the crossover between our method and Pollard rho will be much

higher. Hence, further experiments are needed in determining the exact crossover

point between the two methods for various values of n.

We have no evidence to suggest that the discrete logarithm problem on general

elliptic curves, de�ned over �elds of the form F

2

p

where p is prime, has complexity

smaller than O(2

p=2

). Since these are the �elds of characteristic two which are

recommended in the elliptic curve standards, Weil descent does not appear to be a

threat to standards compliant elliptic curve systems in the real world.

However, we do recommend that elliptic curves de�ned over F

2

p

, for p prime,

should be checked to be sure that they produce a value for m in equation (1) which

is of order around p or equal to one, as in the case of curves de�ned over F

2

. Only

curves with these values for m should be deployed in real world cryptosystems. In

practice most elliptic curves over F

2

p

will satisfy such a requirement, but it is worth

adding this check to curve generation programs and to standards documents.
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